Linux Kernel Module Programming
Guide

1999 Ori Pomerantz

Version 1.1.0, 26 April 1999.

This book is about writing Linux Kernel Modules. It is, hopefully, useful for pro-
grammers who know C and want to learn how to write kernel modules. It is written
as an ‘How-To’ instruction manual, with examples of all of the important techniques.

Although this book touches on many points of kernel design, it is not supposed
to fulfill that need — there are other books on this subject, both in print and in the
Linux documentation project.

You may freely copy and redistribute this book under certain conditions. Please
see the copyright and distribution statement.



Names of all products herein are used for identification purposes only and are trademarks
and/or registered trademarks of their respective owners. | make no claim of ownership or
corporate association with the products or companies that own them.

Copyright © 1999 Ori Pomerantz

Ori Pomerantz

Apt. #1032

2355 N Hwy 360

Grand Prairie

TX 75050

USA

E-mail: npg@i npl e-t ech. com

The Linux Kernel Module Programming Guide is afree book; you may reproduce and/or modify
it under the terms of version 2 (or, at your option, any later version) of the GNU General Public
License as published by the Free Software Foundation. Version 2 is enclosed with this document at
Appendix E.

This book is distributed in the hope it will be useful, but without any warranty; without even
the implied warranty of merchantability or fitness for a particular purpose.

The author encourages wide distribution of this book for personal or commercial use, provided
the above copyright notice remains intact and the method adheres to the provisions of the GNU
General Public License (see Appendix E). In summary, you may copy and distribute this book free
of charge or for a profit. No explicit permission is required from the author for reproduction of this
book in any medium, physical or electronic.

Note, derivative works and translations of this document must be placed under the GNU Genera
Public License, and the original copyright notice must remain intact. If you have contributed new
material to this book, you must make the source code (e.g., IATEX source) available for your revisions.
Please make revisions and updates avail able directly to the document maintainer, Ori Pomerantz. This
will alow for the merging of updates and provide consistent revisions to the Linux community.

If you plan to publish and distribute this book commercially, donations, royalties, and/or printed
copies are greatly appreciated by the author and the Linux Documentation Project. Contributing in
this way shows your support for free software and the Linux Documentation Project. If you have
questions or comments, please contact the address above.



Contents

0 Introduction
0.1 WhoShouldRead This . . . . ... ... ... .. ... .. ........
0.2 NoteontheStyle . . . . . . . . . .. ...
03 Changes . . . . . . . i e e
031 Newinverson1.01 ... ...... ... .. . ...,
0.32 Newinversonl.10 ... ... ... ... ... . ... 0.....
04 Acknowledgements . . . . . . ...
041 Forverson10.1 . ... ... ... ... ...
042 Forverson1.10 ... ... ... ... ...

1 Hello, world

Makefile . . . . . . .
1.2 MultipleFileKernd Modules. . . . . . ... ... ... ... ..., .
Start.C ... e e e
SOP.C o o
Makefile . . . . . . .

2 Character DeviceFiles
chardev.c . . . . . . .
2.1 MultipleKernel VersionsSourceFiles . . . . . . . .. ...

3 The/procFile System
Procfs.C . . . .



i CONTENTS
4 Using/proc For Input 32
ProcfsS.C . . . . 33
5 Talking to Device Files (writesand IOCTLYS) 43
chardev.C . . . . . . . a4
chardev.h . . . . . . 55
IOCtL.C . . 57
6 Startup Parameters 61
ParamM.C . . . . . e e e e e e 61
7 System Calls 65
syscall.C . . .. 67
8 Blocking Processes 73
SEEP.C . . . e e 74
9 Replacing printk’s 86
printk.C . . .. 86
10 Scheduling Tasks 90
sched.C. . . . . . o 91
11 Interrupt Handlers 97
11.1 Keyboardsonthelntel Architecture . . . . . ... ... ... ... .... 98
INLIPL.C . . . . 99
12 Symmetrical Multi—Processing 104
13 Common Pitfalls 106
A Changesbetween 2.0 and 2.2 107
B WhereFrom Here? 109
C Goodsand Services 110
C.1 GettingthisBook inPrint . . . ... ... ... ... . . ......... 110
D Showing Your Appreciation 111



E The GNU General Public License 113

Index 120



Chapter O

| ntroduction

So, you want to write akernel module. You know C, you' vewritten a number of normal
programs to run as processes, and now you want to get to where the real action is, to where
asinglewild pointer can wipe out your file system and a core dump means a reboot.

Well, welcome to the club. | once had awild pointer wipe an important directory under
DOS (thankfully, now it stands for the Dead Operating System), and | don’t seewhy living
under Linux should be any safer.

Warning: | wrote this and checked the program under versions 2.0.35 and 2.2.3 of the
kernel running on a Pentium. For the most part, it should work on other CPUs and on other
versions of the kernel, aslong as they are 2.0.x or 2.2.x, but | can’'t promise anything. One
exception is chapter 11, which should not work on any architecture except for x86.

0.1 Who Should Read This

This document is for people who want to write kernel modules. Although | will touch
on how things are done in the kernel in several places, that is not my purpose. There are
enough good sources which do a better job than | could have done.

Thisdocument is also for people who know how to write kernel modules, but have not
yet adapted to version 2.2 of the kernel. If you are such a person, | suggest you look at
appendix A to see all the differences| encountered while updating the examples. Thelist is
nowhere near comprehensive, but | think it covers most of the basic functionality and will
be enough to get you started.

Thekernel isagreat piece of programming, and | believethat programmers should read



at least some kernel source files and understand them. Having said that, | also believein
the value of playing with the system first and asking questions later. When | learn a new
programming language, | don't start with reading the library code, but by writing a small
‘hello, world’ program. | don’t see why playing with the kernel should be any different.

0.2 Noteonthe Style

I like to put as many jokes as possible into my documentation. I’'m writing this because
| enjoy it, and | assume most of you are reading this for the same reason. If you just want
to get to the point, ignore al the normal text and read the source code. | promise to put all
the important detailsin remarks.

0.3 Changes

0.3.1 Newinversion 1.0.1

1. Changes section, 0.3.

2. How tofind the minor device number, 2.

3. Fixed the explanation of the difference between character and devicefiles, 2
4. Makefilesfor Kernel Modules, 1.1.

5. Symmetrical Multiprocessing, 12.

6. A ‘Bad Ideas Chapter, 13.

0.3.2 Newinversion 1.1.0

1. Support for version 2.2 of the kernel, all over the place.
2. Multi kernel version sourcefiles, 2.1.

3. Changesbetween 2.0 and 2.2, A.

4. Kernel Modulesin Multiple Source Files, 1.2.

5. Suggestion not to let modules which mess with system callsbermmod’ed, 7.



0.4 Acknowledgements

I'd like to thank Yoav Weiss for many helpful ideas and discussions, as well as for
finding mistakes within this document before its publication. Of course, any remaining
mistakes are purely my fault.

The TpX skeleton for this book was shamelessly stolen from the * Linux Installation and
Getting Started’ guide, where the TeX work was done by Matt Welsh.

My gratitude to Linus Torvalds, Richard Stallman and all the other people who made it
possible for me to run a high quality operating system on my computer and get the source
code goes without saying (yeah, right — then why did | say it?).

0.4.1 For version1.0.1

| couldn’t list everybody who e-mailed me here, and if I've left you out | apologize in
advance. The following people were specially helpful:

e Frodo L ooijaard from the Netherlands For a host of useful suggestions, and infor-
mation about the 2.1.x kernels.

e Stephen Judd from New Zealand Spelling corrections.
e Magnus Ahltorp from Sweden Correcting a mistake of mine about the difference
between character and block devices.
0.4.2 For version 1.1.0

e Emmanuel Papirakis from Quebec, Canada For porting al of the examples to
version 2.2 of the kerndl.

¢ Frodo Looijaard from the Netherlands For telling me how to create amultiplefile
kernel module (1.2).

Of course, any remaining mistakes are my own, and if you think they make the book
unusable you're welcome to apply for afull refund of the money you paid me for it.



Chapter 1

Hello, world

When the first caveman programmer chiseled the first program on the walls of the first
cave computer, it was a program to paint the string ‘Hello, world’ in Antelope pictures.
Roman programming textbooks began with the ‘Salut, Mundi’ program. | don't know
what happens to people who break with this tradition, and | think it's safer not to find out.

A kernel module has to have at least two functions: i ni t _-nodul e which is caled
when the module is inserted into the kernel, and cl eanup_nmodul e whichis called just
before it is removed. Typicaly, i ni t _nodul e either registers a handler for something
with the kernel, or it replaces one of the kernel function with its own code (usually code
to do something and then call the original function). The cl eanup_nodul e function is
supposed to undo whatever i ni t _nodul e did, so the module can be unloaded safely.

hello.c

/* hello.c
* Copyright (C) 1998 by Ori Ponerantz

*

* "Hello, world" - the kernel nodul e version.
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */



#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

/* Initialize the nodule */
int init_nodul e()
{
printk("Hello, world - this is the kernel speaking\n");

/* If we return a non zero value, it neans that
* init_nodule failed and the kernel nodul e

* can’'t be | oaded */

return O;

/* Ceanup - undid whatever init_nmodule did */
voi d cl eanup_nodul e()

{

printk("Short is the life of a kernel nodule\n");

}

1.1 Makefilesfor Kernel Modules

A kernel module is not an independant executable, but an object file which will be
linked into the kernel in runtime. As a result, they should be compiled with the - ¢ flag.
Also, all kernel modules have to be compiled with certain symbols defined.



__KERNEL __ — This tells the header files that this code will be run in kernel mode,
not as part of a user process.

MODUL E — Thistells the header files to give the appropriate definitions for akernel
module.

LI NUX — Technically speaking, thisis not necessary. However, if you ever want
to write a serious kernel module which will compile on more than one operating
system, you'll be happy you did. Thiswill allow you to do conditional compilation
on the parts which are OS dependant.

There are other symbols which have to be included, or not, depending on the flags the
kernel was compiled with. If you're not sure how the kernel was compiled, look it up in
/fusr/include/linux/config.h

__SMP__ — Symmetrical MultiProcessing. This has to be defined if the kernel was
compiled to support symmetrical multiprocessing (even if it's running just on one
CPU). If you use Symmetrical MultiProcessing, there are other things you need to
do (see chapter 12).

CONFI GMODVERSI ONS — If CONFIG_.MODVERSIONS was enabled, you
need to have it defined when compiling the kernel module and and to include

/usr/include/linux/mdversions. h. Thiscan aso be done by the code
itself.

M akefile

# Makefile for a basic kernel nodul e

CC=gcc
MODCFLAGS : = -Vl |l -DMODULE -D__KERNEL__ - DLI NUX

hell o.0: hello.c /usr/include/linux/version.h
$(CC $(MIDCFLAGS) -c hello.c

echo insnod hello.o to turn it on

echo rmmod hello to turn if off

echo

echo X and kernel progranm ng do not mx.



echo Do the insnmod and rnmmod from out side X

So, now the only thing left isto su to root (you didn’t compile this as root, did you?
Living on the edge'...), and then i nsnod hel | o and r mod hel | o to your heart’s
content. While you do it, notice your new kernel modulein/ pr oc/ nodul es.

By the way, the reason why the Makefile recommends against doing i nsnod from X
is because when the kernel has a message to print with pri nt k, it sendsit to the console.
When you don't use X, it just goes to the virtual terminal you're using (the one you chose
with Alt-F<n>) and you see it. When you do use X, on the other hand, there are two
possibilities. Either you have a console open with xt er m - C, in which case the output
will be sent there, or you don't, in which case the output will go to virtual terminal 7 — the
one ‘covered by X.

If your kernel becomes unstable you're likelier to get the debug messages without X.
Outsideof X, pr i nt k goesdirectly from the kernel to the console. In X, on the other hand,
pri nt k'sgotoauser mode process (xt er m - C). When that process receives CPU time,
it issupposed to send it to the X server process. Then, when the X server receivesthe CPU,
it is supposed to display it — but an unstable kernel usually means that the system is about
to crash or reboot, so you don’t want to delay the error messages, which might explain to
you what went wrong, for longer than you haveto.

1.2 Multiple File Kernel Modules

Sometimes it makes sense to divide a kernel module between severa source files. In
this case, you need to do the following:

1. Inall the source files but one, add the line#def i ne __NO.VERSI ON__. Thisisim-
portant because nodul e. h normally includesthe definition of ker nel _ver si on,
a global variable with the kernel version the module is compiled for. If you need
ver si on. h, you need to include it yourself, because nodul e. h won't do it for
you with __NO_VERSI ON__.

2. Compileall the sourcefiles as usual.

3. Combine all the object
filesinto asingle one. Under x86, doitwithld -m el f_.i 386 -r -0 <nane

1Thereason | prefer not to compile asroot isthat the least done as root the safer the box is. | work in computer
security, so I’'m paranoid



of nodul e>. 0 <1st source file>. 0 <2nd source file>.o.

Here's an example of such akernel module.

start.c

[* start.c
* Copyright (C) 1999 by Oi Pomerantz

* "Hello, world" - the kernel nodul e version
* This file includes just the start routine

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

/* Initialize the nodule */
int init_nodul e()

{
printk("Hello, world - this is the kernel speaking\n");

/* If we return a non zero value, it nmeans that
* init_nodule failed and the kernel nodul e

* can’'t be | oaded */

return O;



stop.c

/* stop.c
* Copyright (C 1999 by Oi Ponerantz

* "Hello, world" - the kernel nmodule version. This
* file includes just the stop routine.
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */

#define _ NO VERSI ON /[* This isn't "the" file
* of the kernel nodule */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

#i ncl ude <linux/version.h> /* Not included by
* nodul e. h because
* of the _ NO VERSION _ */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/ nodver si ons. h>
#endi f



/* Ceanup - undid whatever init_nodule did */
voi d cl eanup_nodul e()

{

printk("Short is the life of a kernel nodule\n");

M akefile

# Makefile for a nultifile kernel nodule

CC=gcc
MODCFLAGS : = -Vl | -DMODULE -D__KERNEL_ - DLI NUX

hell 0.0: start.o stop.o
ld -melf_i386 -r -0 hello.o start.o stop.o

start.o: start.c /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c start.c

stop.o: stop.c /usr/include/linux/version.h
$(CC $(MOIDCFLAGS) -c stop.c



Chapter 2

Character Device Files

So, now we're bold kernel programmers and we know how to write kernel modules to
do nothing. We feel proud of ourselves and we hold our heads up high. But somehow we
get the feeling that something is missing. Catatonic modules are not much fun.

There are two major ways for a kernel module to talk to processes. One is through
device files (like the files in the / dev directory), the other is to use the proc file system.
Since one of the major reasons to write something in the kernel is to support some kind of
hardware device, we'll begin with devicefiles.

The original purpose of devicefilesisto allow processes to communicate with device
driversin the kernel, and through them with physical devices (modems, terminals, etc.).
The way thisisimplemented is the following.

Each device driver, which is responsible for some type of hardware, is assigned
its own major number. The list of drivers and their mgjor numbers is available in
/ proc/ devi ces. Each physical device managed by a device driver is assigned a mi-
nor number. The/ dev directory is supposed to include a special file, called adevicefile,
for each of those devices, whether or not it'sreally installed on the system.

For example, if youdol s -1 /dev/ hd[ ab] *, you'll see all of the IDE hard disk
partitions which might be connected to a machine. Notice that all of them use the same
major number, 3, but the minor number changes from one to the other Disclaimer: This
assumes you're using a PC architecture. | don’t know about devices on Linux running on
other architectures.

When the system was installed, al of those device files were created by the nknod
command. There's no technical reason why they have to bein the/ dev directory, it'sjust

12



a useful convention. When creating a device file for testing purposes, as with the exercise
here, it would probably make more sense to place it in the directory where you compile the
kernel module.

Devicesare divided into two types: character devicesand block devices. The difference
is that block devices have a buffer for requests, so they can choose by which order to
respond to them. Thisisimportant in the case of storage devices, where it's faster to read
or write sectors which are close to each other, rather than those which are further apart.
Another difference is that block devices can only accept input and return output in blocks
(whose size can vary according to the device), whereas character devices are allowed to use
as many or asfew bytes asthey like. Most devicesin the world are character, because they
don’t need this type of buffering, and they don’t operate with a fixed block size. You can
tell whether a device file isfor a block device or a character device by looking at the first
character intheoutput of I s -1 . If it's‘b’ thenit'sablock device, and if it's‘c’ thenit's
acharacter device.

This module is divided into two separate parts: The module part which regis-
ters the device and the device driver part. The i ni t _nodul e function calls nod-
ul eregi st er _chrdev to add the device driver to the kernel’s character device driver
table. It also returns the major number to be used for the driver. The cl eanup_nodul e
function deregisters the device.

This (registering something and unregistering it) is the general functionality of those
two functions. Things in the kernel don't run on their own initiative, like processes, but
are called, by processes viasystem calls, or by hardware devices viainterrupts, or by other
parts of the kernel (simply by calling specific functions). As a result, when you add code
to the kernel, you're supposed to register it as the handler for a certain type of event and
when you removeit, you' re supposed to unregister it.

The device driver proper is composed of the four device_<action> functions, which
are called when somebody tries to do something with a device file which has our major
number. The way the kernel knowsto call themisviathefi | e_oper ati ons structure,
Fops, which was given when the device was registered, which includes pointers to those
four functions.

Another point we need to remember here is that we can’t allow the kernel module to
be r moded whenever root feels like it. The reason isthat if the device file is opened by
a process and then we remove the kernel module, using the file would cause a call to the
memory location where the appropriate function (read/write) used to be. If we're lucky, no
other code was |oaded there, and we' |l get an ugly error message. If we're unlucky, another
kernel module was loaded into the same location, which means a jump into the middle of



another function within the kernel. The results of this would be impossible to predict, but
they can’t be positive.

Normally, when you don’ t want to allow something, you return an error code (anegative
number) from the function which is supposed to do it. With cl eanup_nodul e that is
impossible because it's a void function. Once cl eanup_nodul e iscalled, the moduleis
dead. However, there is a use counter which counts how many other kernel modules are
using this kernel module, called the reference count (that's the last number of the linein
/ proc/ nodul es). If this number isn’t zero, r nmod will fail. The modul€’s reference
count is available in the variable nod_use_count _. Since there are macros defined for
handling this variable (MOD_I NC_USE_COUNT and MOD_DEC_USE_COUNT), we prefer to
use them, rather than nod_use_count _ directly, so we'll be safe if the implementation
changesin the future.

chardev.c

/* chardev.c

* Copyright (C) 1998-1999 by Ori Pomerantz
* Create a character device (read only)

*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

/* For character devices */
#include <linux/fs. h> /* The character device

* definitions are here */
#i ncl ude <linux/wapper.h> /* A wapper which does



* next to nothing at

* at present, but may

* help for conpatibility
* with future versions

* of Linux */

/* In 2.2.3 /usr/include/linux/version.h includes
* a macro for this, but 2.0.35 doesn’'t - so | add
* it here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢c) ((a)*65536+(b)*256+(c))
#endi f

/* Conditional conpilation. LINUX VERSI ON CODE is
* the code (as per KERNEL_VERSI ON) of this version. */
#if LI NUX_VERSI ON_CODE > KERNEL_VERSI ON( 2, 2, 0)
#i ncl ude <asnfuaccess.h> /* for put_user */
#endi f

#defi ne SUCCESS 0

/* DEVI ce mcl al’athﬂS EE R R I I I I R R O */

/* The name for our device, as it wll appear
* in /proc/devices */
#def i ne DEVI CE_NAME "char _dev"

/* The maxi mum | ength of the nmessage fromthe device */
#def i ne BUF_LEN 80



/* I's the device open right now? Used to prevent
* concurent access into the same device */
static int Device Open = 0;

/* The message the device will give when asked */
static char Message[ BUF_LEN;

/* How far did the process readi ng the nessage

* get? Useful if the nessage is larger than the size
* of the buffer we get to fill in device_read. */
static char *Message Ptr

/* This function is called whenever a process
* attenpts to open the device file */
static int device_open(struct inode *inode,
struct file *file)

{

static int counter = O;

#i f def DEBUG
printk ("device_open(%, %)\n", inode, file);
#endi f

/* This is how you get the minor device nunber in
* case you have nore than one physical device using
* the driver. */

printk("Device: %d. %d\n",

i node->i _rdev >> 8, inode->i _rdev & OxFF);

/* W don't want to talk to two processes at the
* sane tinme */
i f (Device_QOpen)

return -EBUSY;

/* If this was a process, we would have had to be



* nore careful here.

* |n the case of processes, the danger woul d be
* that one process mght have check Devi ce_Open
* and then be replaced by the schedual er by anot her
* process which runs this function. Then, when the
* first process was back on the CPU, it would assune
* the device is still not open.

* However, Linux guarantees that a process won't be
* replaced while it is running in kernel context.

* I n the case of SMP, one CPU m ght increnent
* Device_Open while another CPU is here, right after
* the check. However, in version 2.0 of the

* kernel this is not a problem because there’'s a | ock

* to guarantee only one CPU will be kernel nodule at
* the same tinme. This is bad in terms of
* performance, so version 2.2 changed it.

* Unfortunately, | don’t have access to an SMP box
* to check how it works with SMP.
*/

Devi ce_QOpen++;

/* Initialize the message. */
sprintf(Message,
“If I told you once, | told you % tines - %",
count er ++,
"Hell o, world\n");
/* The only reason we're allowed to do this sprintf
* is because the nmaxi mum | ength of the nessage
* (assuming 32 bit integers - up to 10 digits
* with the minus sign) is less than BUF_LEN, which
* is 80. BE CAREFUL NOT TO OVERFLOW BUFFERS,
* ESPECI ALLY I N THE KERNEL!!!



*/
Message_ Ptr = Message;

/* Make sure that the nodule isn't renoved while
* the file is open by incrementing the usage count
* (the nunber of opened references to the nodule, if
* it’s not zero rmmod will fail)
*/
MOD_| NC_USE_COUNT;

ret urn SUCCESS;

/* This function is called when a process cl oses the
* device file. It doesn’t have a return value in
* version 2.0.x because it can't fail (you nust ALWAYS
* be able to close a device). In version 2.2.x it is
* allowed to fail - but we won't let it.
*/
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
static int device_rel ease(struct inode *inode,
struct file *file)
#el se
static void device_rel ease(struct inode *inode,
struct file *file)
#endi f
{
#i f def DEBUG
printk ("device_rel ease(%, %)\n", inode, file);
#endi f

/* W're now ready for our next caller */
Devi ce_QOpen --;



/* Decrement the usage count, otherw se once you

* opened the file you' Il never get rid of the nodule.
*/

MOD_DEC _USE_COUNT;

#if LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
return O;
#endi f

}

/* This function is called whenever a process which
* have already opened the device file attenpts to
* read fromit. */

#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)

static ssize_t device_read(struct file *file,
char *buffer, /* The buffer to fill with data */
size_t length, /* The length of the buffer */
|off t *offset) /* Qur offset in the file */

#el se

static int device_read(struct inode *inode,

struct file *file,

char *buffer, /* The buffer to fill with
* the data */
int |ength) /* The length of the buffer
* (mustn't wite beyond that!) */
#endi f
{

/* Number of bytes actually witten to the buffer */
int bytes read = 0;

/* If we're at the end of the message, return O
* (which signifies end of file) */
if (*Message Ptr == 0)



return O;

/* Actually put the data into the buffer */
while (length & *Message Ptr) {

/* Because the buffer is in the user data segnent,
* not the kernel data segnent, assignnent woul dn’t
* work. Instead, we have to use put_user which
* copies data fromthe kernel data segment to the
* user data segnent. */

put user(*(Message Ptr++), buffer++);

length --;
bytes_read ++;

}

#i f def DEBUG
printk ("Read % bytes, % left\n",
bytes_read, |ength);
#endi f

/* Read functions are supposed to return the nunber
* of bytes actually inserted into the buffer */
return bytes read;

/* This function is called when sonebody tries to wite
* into our device file - unsupported in this exanple. */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
static ssize_t device_ wite(struct file *file,
const char *buffer, /* The buffer */
size_ t length, /* The length of the buffer */



loff _t *offset) /* Qur offset in the file */
#el se
static int device wite(struct inode *inode,
struct file *file,
const char *buffer,
int |ength)
#endi f

{
return -El NVAL;

/* '\/bdule mcl aratIOHS KRR b S b S I R R R I */

/* The nmjor device nunber for the device. This is
* global (well, static, which in this context is gl oba
*within this file) because it has to be accessible
* both for registration and for rel ease. */

static int Mjor;

/* This structure will hold the functions to be
* called when a process does sonething to the device
* we created. Since a pointer to this structure is
* kept in the devices table, it can't be local to
* init_nodule. NULL is for uninplenented functions. */

struct file_operations Fops = {
NULL, /* seek */
devi ce_read,
device write,
NULL, /* readdir */
NULL, /* select */
NULL, /[* ioctl */



NULL, [* mmap */
devi ce_open,
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
NULL, [* flush */
#endi f
device release /* a.k.a. close */

}s

/* Initialize the nmodule - Register the character device */
int init_nodule()
{
/* Register the character device (atleast try) */
Maj or = nodul e_regi ster_chrdev(O0,
DEVI CE_NAME,
&Fops) ;

/* Negative values signify an error */
if (Mpjor < 0) {
printk ("% device failed with %\ n",
"Sorry, registering the character”,
Maj or) ;
return Mjor;

}

printk ("% The major device nunber is %.\n"

"Regi steration is a success.",

Maj or) ;
printk ("If you want to talk to the device driver,\n");
printk ("you Il have to create a device file. \n");
printk ("W suggest you use:\n");
printk ("mknod <name> c¢ % <mi nor>\n", Major);
printk ("You can try different mnor nunbers %",

"and see what happens.\n");

return O;



/* Ceanup - unregister the appropriate file from/proc */
voi d cl eanup_nodul e()

{

int ret;

/* Unregi ster the device */
ret = modul e_unregi ster_chrdev(Major, DEVI CE_NAME);

/* If there's an error, report it */
if (ret <0)
printk("Error in unregister_chrdev: %l\n", ret);

2.1 MultipleKernel Versions Source Files

The system calls, which are the magjor interface the kernel shows to the processes,
generally stay the same across versions. A new system call may be added, but usually the
old oneswill behave exactly likethey used to. Thisisnecessary for backward compatibility
— anew kernel version is not supposed to break regular processes. In most cases, the
device fileswill also remain the same. On the other hand, the internal interfaces within the
kernel can and do change between versions.

The Linux kernel versions are divided between the stable versions (n.<even
number>.m) and the development versions (n.<odd number>.m). The development ver-
sions include all the cool new ideas, including those which will be considered a mistake,
or reimplemented, in the next version. As aresult, you can't trust the interface to remain
the same in those versions (which is why | don't bother to support them in this book, it's
too much work and it would become dated too quickly). In the stable versions, on the other
hand, we can expect the interface to remain the same regardless of the bug fix version (the
m number).

This version of the MPG includes support for both version 2.0.x and version 2.2.x
of the Linux kernel. Since there are differences between the two, this requires condi-



tional compilation depending on the kernel version. The way to do this to use the macro
LI NUX_VERSI ON_CCDE. In version ab.c of the kernel, the value of this macro would
be 216a + 28b 4 ¢. To get the value for a specific kernel version, we can use the KER-
NEL _VERSI ON macro. Sinceit’s not defined in 2.0.35, we define it ourselvesif necessary.



Chapter 3

The/proc File System

In Linux there is an additional mechanism for the kernel and kernel modules to send
information to processes — the / pr oc file system. Originally designed to alow easy
access to information about processes (hence the name), it is now used by every bit of the
kernel which has something interesting to report, such as/ pr oc/ nodul es which hasthe
list of modulesand / pr oc/ mem nf o which has memory usage statistics.

The method to use the proc file system is very similar to the one used with device
drivers — you create a structure with all the information needed for the / pr oc file, in-
cluding pointers to any handler functions (in our case there is only one, the one called
when somebody attempts to read from the / pr oc file). Then, i ni t _-nodul e registers
the structure with the kernel and cl eanup_nodul e unregistersit.

The reason we use pr oc_r egi st er _dynami ¢! is because we don’t want to deter-
mine the inode number used for our file in advance, but to allow the kernel to determine it
to prevent clashes. Normal file systems are located on a disk, rather than just in memory
(which iswhere/ pr oc is), and in that case the inode number is a pointer to a disk loca-
tion where thefile'sindex-node (inode for short) islocated. Theinode containsinformation
about thefile, for exampl e thefile's permissions, together with a pointer to the disk location
or locations where the file's data can be found.

Because we don't get called when the file is opened or closed, there's no where for us
to put MOD_lI NC_USE_COUNT and MOD_DEC_USE_CQUNT in this module, and if the file
is opened and then the module is removed, there’'s no way to avoid the consegquences. In
the next chapter we'll see a harder to implement, but more flexible, way of dealing with

Linversion 2.0, in version 2.2 thisis done for us automatically if we set the inode to zero.

25



/ pr oc fileswhich will allow usto protect against this problem as well.

procfs.c

/* procfs.c - «create a "file" in /proc
* Copyright (C) 1998-1999 by Ori Pomerantz
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/ nodver si ons. h>
#endi f

/* Necessary because we use the proc fs */
#i ncl ude <linux/proc_fs. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢c) ((a)*65536+(b)*256+(c))
#endi f

/* Put data into the proc fs file.



Argunent s

1. The buffer where the data is to be inserted, if
you decide to use it.

2. Apointer to a pointer to characters. This is
useful if you don't want to use the buffer
al | ocated by the kernel

3. The current position in the file.

The size of the buffer in the first argunent.

5. Zero (for future use?).

>

Usage and Return Val ue

If you use your own buffer, like |I do, put its
| ocation in the second argunent and return the
nunber of bytes used in the buffer.

A return val ue of zero neans you have no further
information at this time (end of file). A negative
return value is an error condition

For More Infornmation

The way | discovered what to do with this function
wasn’'t by readi ng docunentation, but by reading the
code which used it. | just |ooked to see what uses
the get _info field of proc dir_entry struct (I used a
conbination of find and grep, if you re interested),
and | sawthat it is used in <kernel source
directory>/fs/proc/array.c.

If sonething is unknown about the kernel, this is
usually the way to go. In Linux we have the great



advant age of having the kernel source code for
free - use it.
*/
int procfile_read(char *buffer,
char **buffer_|ocation,
off t offset,
int buffer | ength,

int zero)

{
int len; /* The nunber of bytes actually used */
/* This is static so it will still be in nmenory

* when we | eave this function */
static char ny_buffer[80];

static int count = 1;

/* We give all of our information in one go, so if the
* user asks us if we have nore information the
* answer should al ways be no.

* This is inportant because the standard read
* function fromthe library would continue to issue
* the read systemcall until the kernel replies

* that it has no nore information, or until its
* puffer is filled.
* [
if (offset > 0)
return O;

/* Fill the buffer and get its length */
len = sprintf(my_buffer
"For the %% time, go away!\n", count,
(count % 100 > 10 && count % 100 < 14) ? "th"
(count %10 == 1) ? "st"
(count %10 == 2) ? "nd"



(count %10 == 3) ? "rd" : "th" );
count ++;

/* Tell the function which called us where the
* puffer is */
*puf fer Il ocation = my_buffer

/* Return the length */
return | en;

struct proc_dir_entry Qur_Proc File =

{
0, /* Inode nunmber - ignore, it will be filled by

* proc_register[_dynamc] */

4, [* Length of the file nanme */

"test", /* The file name */

SIFREG| SIRUG /* File nmobde - this is a regul ar
* file which can be read by its
* owner, its group, and everybody
* else */

1, /* Nunber of links (directories where the

* file is referenced) */
0, O, [/* The uid and gid for the file - we give it
* to root */
80, /* The size of the file reported by |Is. */
NULL, /* functions which can be done on the inode
* (linking, removing, etc.) - we don't
* support any. */
procfile read, /* The read function for this file,
* the function called when sonebody
* tries to read sonething fromit. */
NULL /* We could have here a function to fill the
* file's inode, to enable us to play with
* perm ssions, ownership, etc. */



/* Initialize the nodule - register the proc file */
int init_nodule()
{

/* Success if proc_register[_dynamic] is a success,

* failure otherw se. */
#if LI NUX_VERSI ON_CODE > KERNEL_ VERSI O\( 2, 2, 0)

/* In version 2.2, proc_register assign a dynanic

* inode nunmber automatically if it is zero in the

* structure , so there’s no nore need for

* proc_register_dynamc

*/

return proc_register(&rroc_root, &ur_ Proc_File);
#el se

return proc_register_dynani c(&roc_root, &ur_ Proc_File);
#endi f

/* proc_root is the root directory for the proc

* fs (/proc). This is where we want our file to be
* | ocat ed.

*/

/* Ceanup - unregister our file from/proc */
voi d cl eanup_nodul e()

{

proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);






Chapter 4

Using /proc For I nput

So far we have two ways to generate output from kernel modules: we can register a
device driver and nknod a device file, or we can create a/ pr oc file. This allows the
kernel module to tell us anything it likes. The only problem is that thereis no way for usto
talk back. The first way we'll send input to kernel modules will be by writing back to the
/ pr oc file.

Because the proc filesystem was written mainly to allow the kernel to report its situa-
tion to processes, there are no specia provisions for input. The pr oc_di r _ent ry struct
doesn’t include a pointer to an input function, the way it includes a pointer to an output
function. Instead, to writeinto a/ pr oc file, we need to use the standard filesystem mech-
anism.

In Linux there is a standard mechanism for file system registration. Since every file
system has to have its own functions to handle inode and file operations!, there is a special
structure to hold pointers to all those functions, st r uct i node_oper ati ons, which
includes a pointer to st ruct fil e_operati ons. In/proc, whenever we register a
new file, we're allowed to specify which st ruct i node_oper at i ons will beused for
access to it. Thisisthe mechanism we use, astruct i node_operati ons whichin-
cludesapointertoast ruct fil e_operati ons whichincludes pointersto our nod-
ul e_i nput and nodul e_out put functions.

It'simportant to note that the standard roles of read and write are reversed in the kernel.
Read functions are used for output, whereas write functions are used for input. The reason

1The difference between the two is that file operations deal with thefile itself, and inode operations deal with
ways of referencing thefile, such ascreating linksto it.

32



for that isthat read and writerefer to the user’s point of view — if aprocess reads something
from the kernel, then the kernel needs to output it, and if a process writes something to the
kernel, then the kernel receivesit asinput.

Another interesting point here is the nodul e_per ni ssi on function. This function
is called whenever a process tries to do something with the / pr oc file, and it can decide
whether to allow access or not. Right now it isonly based on the operation and the uid of the
current used (asavailablein cur r ent , apointer to a structure which includes information
on the currently running process), but it could be based on anything we like, such as what
other processes are doing with the same file, the time of day, or the last input we received.

The reason for put _user and get _user isthat Linux memory (under Intel archi-
tecture, it may be different under some other processors) is segmented. This means that
a pointer, by itself, does not reference a unique location in memory, only alocation in a
memory segment, and you need to know which memory segment it isto be able to use it.
Thereis one memory segment for the kernel, and one of each of the processes.

The only memory segment accessible to a processis its own, so when writing regular
programs to run as processes, there’s no need to worry about segments. When you write a
kernel module, normally you want to access the kernel memory segment, which is handled
automatically by the system. However, when the content of a memory buffer needs to be
passed between the currently running process and the kernel, the kernel function receives
a pointer to the memory buffer which is in the process segment. The put _user and
get _user macros alow you to access that memory.

procfs.c

/* procfs.c - create a "file" in /proc, which allows
* both input and output. */

/* Copyright (C) 1998-1999 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */



/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

/* Necessary because we use proc fs */
#i ncl ude <linux/proc_fs. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
#i ncl ude <asnfuaccess.h> [* for get_user and put_user */
#endi f

/* The nodul e’ s file functions ***x***kxxkkkxxkkkxrikx */

/* Here we keep the | ast nessage received, to prove
* that we can process our input */

#defi ne MESSAGE_LENGTH 80

static char Message[ MESSAGE LENGTH];

/* Since we use the file operations struct, we can’'t

* use the special proc output provisions - we have to

* use a standard read function, which is this function */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)



static ssize_t nodul e_out put (
struct file *file, /* The file read */
char *buf, /* The buffer to put data to (in the
* user segment) */
size_t len, [/* The length of the buffer */
loff_t *offset) /* Ofset inthe file - ignore */
#el se
static int nodul e_out put(
struct inode *inode, /* The inode read */
struct file *file, [* The file read */
char *buf, /* The buffer to put data to (in the
* user segnent) */
int len) /* The length of the buffer */
#endi f
{
static int finished = 0;
int i;
char message[ MESSAGE LENGTH+30] ;

/* We return 0 to indicate end of file, that we have
* no nore informati on. Ot herw se, processes will
* continue to read fromus in an endl ess | oop. */
if (finished) {

finished = 0;

return O;

/* W use put_user to copy the string fromthe kernel’'s
* menory segnent to the nmenory segnent of the process
* that called us. get _user, BTW is
* used for the reverse. */

sprintf(message, "Last input:%", Message);

for(i=0; i<len && nessage[i]; i ++)

put _user(message[i], buf+i);



/* Notice, we assunme here that the size of the message
* is belowlen, or it will be received cut. In a real
* |ife situation, if the size of the nessage is |ess
* than len then we’'d return |l en and on the second call

* start filling the buffer with the len+l th byte of
* the nessage. */

finished = 1;

return i; /* Return the number of bytes "read" */

/* This function receives input fromthe user when the
* user wites to the /proc file. */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)

static ssize_t nodul e_input (

struct file *file, /* The file itself */

const char *buf, [* The buffer with input */

size_t length, /[* The buffer’s length */

lof f_t *offset) /* offset to file - ignore */
#el se

static int nodul e_input(
struct inode *inode, /* The file's inode */

struct file *file, /[* The file itself */
const char *buf, /[* The buffer with the input */
int |ength) /[* The buffer’s length */
#endi f
{
int i;

/* Put the input into Message, where nodul e_out put
*wWwill later be able to use it */
for(i=0; i<MESSAGE LENGTH 1 && i<length; i++)
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
get _user (Message[i], buf+i);
/* In version 2.2 the semantics of get_user changed,



* it not longer returns a character, but expects a

* variable to fill up as its first argunent and a
* user segnent pointer to fill it fromas the its
* second.

* The reason for this change is that the version 2.2
* get _user can also read an short or an int. The way
* it knows the type of the variable it should read

* is by using sizeof, and for that it needs the

* variable itself.

*/
#el se
Message[i] = get _user(buf+i);
#endi f
Message[i] = '\0"; /* we want a standard, zero

* termnated string */

/* W& need to return the nunber of input characters
* used */
return i;

/* This function decides whether to allow an operation
* (return zero) or not allowit (return a non-zero
* which indicates why it is not allowed).

* The operation can be one of the foll ow ng val ues:

- Execute (run the "file" - meaningless in our case)
- Wite (input to the kernel nopdule)

- Read (output fromthe kernel nodul e)

*
AN O

* This is the real function that checks file
* perm ssions. The permissions returned by Is -1 are
* for referece only, and can be overridden here.



*/
static int nodul e _perm ssion(struct inode *inode, int op)
{
/* W allow everybody to read from our nodul e, but
* only root (uid 0) may wite to it */
if (op ==4 ]| (op ==2 && current->euid == 0))
return O;

[* If it’s anything el se, access is denied */
return - EACCES;

/* The file is opened - we don’t really care about
* that, but it does nean we need to increnent the
* nmodul e’ s reference count. */
i nt nodul e_open(struct inode *inode, struct file *file)

{
MOD_| NC_USE_COUNT;

return O;

/* The file is closed - again, interesting only because

* of the reference count. */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)

i nt nodul e_cl ose(struct inode *inode, struct file *file)
#el se
voi d nmodul e_cl ose(struct inode *inode, struct file *file)
#endi f

{
MOD_DEC_USE_COUNT;



#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
return 0; /* success */
#endi f

}

/* Structures to register as the /proc file, with
* pointers to all the relevant functions. *****x*x%xxx x/

/* File operations for our proc file. This is where we
* place pointers to all the functions called when
* sonebody tries to do something to our file. NULL
* means we don’t want to deal with sonething. */
static struct file_operations File_Ops_4 Qur_Proc_File =
{
NULL, /* Iseek */
nmodul e_output, /* "read" fromthe file */
nmodul e_i nput , [* "wite" to the file */
NULL, /* readdir */
NULL, /* select */
NULL, /* ioctl */
NULL, /* mmap */
nodul e_open, /* Sonmebody opened the file */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
NULL, /* flush, added here in version 2.2 */
#endi f
nmodul e_cl ose, /* Somebody closed the file */
/* etc. etc. etc. (they are all given in
* Jusr/include/linux/fs.h). Since we don’t put
* anything here, the systemw || keep the default
* data, which in Unix is zeros (NULLs when taken as
* pointers). */



/* Inode operations for our proc file. W need it so
* we'll have sone place to specify the file operations
* structure we want to use, and the function we use for
* permissions. It’'s also possible to specify functions
* to be called for anything else which could be done to
* an inode (although we don't bother, we just put
* NULL). */
static struct inode_operations Inode Ops_4 Qur_Proc_File =

{

&File Ops_4 Qur_Proc_File,

NULL, /* create */

NULL, /* | ookup */

NULL, /* link */

NULL, /* unlink */

NULL, /* symink */

NULL, /* nkdir */

NULL, /* rmdir */

NULL, /* nknod */

NULL, /* renane */

NULL, /* readlink */

NULL, /* follow link */

NULL, /* readpage */

NULL, /* writepage */

NULL, /* bmap */

NULL, /* truncate */

nmodul e_perm ssion /* check for perm ssions */

/* Directory entry */
static struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunber - ignore, it will be filled by
* proc_register[_dynanmic] */



7, I* Length of the file nane */

"rwtest", /* The file name */

SIFREG| S IRUGO | S | WSR

/* File mode - this is a regular file which

* can be read by its owner, its group, and everybody
* else. Also, its owner can wite to it.

* Actually, this field is just for reference, it’'s
* modul e_perni ssion that does the actual check. It
* could use this field, but in our inplenentation it
* doesn't, for sinplicity. */
1, /* Nunmber of links (directories where the
* file is referenced) */
0, 0, /* The uid and gid for the file -
* we give it to root */
80, /* The size of the file reported by |Is. */
& node _Ops_4 Qur _Proc_File,
/* A pointer to the inode structure for
* the file, if we need it. In our case we
* do, because we need a wite function. */
NULL
/* The read function for the file. Irrelevant,
* because we put it in the inode structure above */

b

/* Module initialization and cl eanup *****x**xkkxdkrkkrxs /[

/* Initialize the nodule - register the proc file */
int init_nodul e()
{
/* Success if proc_register[_dynamic] is a success,
* failure otherw se */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
/* In version 2.2, proc_register assign a dynanic



* inode nunmber automatically if it is zero in the
* structure , so there’s no nore need for
* proc_register_dynamc
*/
return proc_register(&rroc_root, &ur_ Proc_File);
#el se
return proc_register_dynanic(&roc_root, &ur Proc File);
#endi f
}

/* Ceanup - unregister our file from/proc */
voi d cl eanup_nodul e()

{

proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);



Chapter 5

Talking to Device Files (writes
and IOCTLYS)

Devicefiles are supposed to represent physical devices. Most physical devices are used
for output as well as input, so there has to be some mechanism for device drivers in the
kernel to get the output to send to the device from processes. Thisis done by opening the
devicefile for output and writing to it, just like writing to afile. In the following example,
thisisimplemented by devi ce_wri t e.

Thisis not always enough. Imagine you had a serial port connected to a modem (even
if you have an internal modem, it is till implemented from the CPU’s perspective as a
serial port connected to amodem, so you don't haveto tax your imagination too hard). The
natural thing to do would be to use the device file to write things to the modem (either mo-
dem commands or data to be sent through the phone line) and read things from the modem
(either responses for commands or the data received through the phoneline). However, this
leaves open the question of what to do when you need to talk to the serial port itself, for
example to send the rate at which datais sent and received.

The answer in Unix is to use a special function called i oct | (short for input output
control). Every device can haveitsowni oct | commands, which canbereadi octl’s
(to send information from a process to the kernel), write i oct | ’s (to return information
to aprocess), ! both or neither. Theioctl function is called with three parameters: the file
descriptor of the appropriate device file, the ioctl number, and a parameter, which is of type

INotice that here the roles of read and write are reversed again, soini oct | *sread is to send information to
the kernel and writeis to receive information from the kernel.

43



long so you can use acast to use it to pass anything. 2

Theioctl number encodes the major device number, the type of theioctl, the command,
and the type of the parameter. Thisioctl number is usually created by a macro cal (_I O,
1 OR, _I OWor _| OAR — depending on the type) in a header file. This header file should
then be #i ncl ude’d both by the programs which will usei oct | (so they can generate
the appropriatei oct | 's) and by the kernel module (so it can understand it). Inthe example
below, the header fileischar dev. h and the program which usesitisi oct | . c.

If youwant tousei oct | "sinyour own kernel modules, it is best to receive an official
i oct| assignment, so if you accidentally get somebody else’'si oct | ’s, or if they get
yours, you'll know something is wrong. For more information, consult the kernel source
treeat ‘Docunent ati on/ioctl - nunber.txt’.

chardev.c

/* chardev.c

*

* Create an input/output character device
*/

/* Copyright (C 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/ nodver si ons. h>
#endi f

2Thisisn't exact. You won't be able to pass a structure, for example, through an ioctl — but you will be able
to pass a pointer to the structure.



/* For character devices */

/* The character device definitions are here */
#i ncl ude <linux/fs. h>

/* A wapper which does next to nothing at
* at present, but nay help for conpatibility
* with future versions of Linux */

#i ncl ude <l i nux/w apper. h>

/* Qur own ioctl nunbers */
#i ncl ude "chardev. h"

/* In 2.2.3 [usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’'t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢c) ((a)*65536+(b)*256+(c))
#endi f

#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
#i ncl ude <asnfuaccess.h> [* for get_user and put_user */
#endi f

#defi ne SUCCESS 0

/* DEVI ce mcl al’athﬂS EE R R R I I I R R R I I O O */



/* The nanme for our device, as it will appear in
* [ proc/devices */
#defi ne DEVI CE_NAME "char _dev"

/* The maxi mum | ength of the nessage for the device */
#def i ne BUF_LEN 80

/* I's the device open right now? Used to prevent
* concurent access into the same device */
static int Device Open = 0;

/* The message the device will give when asked */
static char Message[ BUF_LEN;

/* How far did the process reading the nessage get?

* Useful if the nmessage is larger than the size of the
* pbuffer we get to fill in device_read. */
static char *Message Ptr;

/* This function is called whenever a process attenpts
* to open the device file */
static int device_open(struct inode *inode,
struct file *file)
{
#i f def DEBUG
printk ("device_open(%)\n", file);
#endi f

/* W don't want to talk to two processes at the
* same time */
i f (Device_QOpen)

return - EBUSY,;



/* If this was a process, we would have had to be

* nore careful here, because one process m ght have

* checked Device _Open right before the other one

* tried to increment it. However, we're in the

* kernel, so we’'re protected agai nst context sw tches.

* This is NOT the right attitude to take, because we

* mght be running on an SWMP box, but we’'ll deal wth
* SMP in a later chapter.
*/

Devi ce_Qpen++;

/* Initialize the message */
Message Ptr = Message;

MOD_| NC_USE_COUNT;

return SUCCESS;

/* This function is called when a process cl oses the
* device file. It doesn’t have a return val ue because
* it cannot fail. Regardl ess of what el se happens, you
* should always be able to close a device (in 2.0, a 2.2
* device file could be inpossible to close). */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
static int device_rel ease(struct inode *inode,
struct file *file)
#el se
static void device_rel ease(struct inode *inode,
struct file *file)
#endi f

{
#i f def DEBUG



printk ("device_rel ease(%, %)\n", inode, file);
#endi f

/* W're now ready for our next caller */
Devi ce_QOpen --;

MOD_DEC_USE_COUNT;

#i f LI NUX_VERSI ON_CODE >= KERNEL_VERSI O\( 2, 2, 0)
return O;
#endi f

}

/* This function is called whenever a process which
* has al ready opened the device file attenpts to
* read fromit. */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
static ssize_t device_read(
struct file *file,

char *buffer, /* The buffer to fill with the data */
size_t length, /* The length of the buffer */
loff_t *offset) /* offset to the file */

#el se

static int device_ read(
struct inode *inode,
struct file *file,

char *buffer, /* The buffer to fill with the data */
int |ength) /* The length of the buffer
* (mustn't wite beyond that!) */
#endi f
{

/* Number of bytes actually witten to the buffer */
int bytes read = 0;



#i f def DEBUG
printk("device_read(%, %, %)\ n",
file, buffer, length);
#endi f

/* If we're at the end of the message, return O
* (which signifies end of file) */
if (*Message Ptr == 0)
return O;

/* Actually put the data into the buffer */
while (length & *Message Ptr) {

/* Because the buffer is in the user data segnent,
* not the kernel data segnent, assignnent woul dn’t
* work. Instead, we have to use put_user which
* copies data fromthe kernel data segment to the
* user data segnent. */

put _user(*(Message Ptr++), buffer++);

length --;

bytes read ++;

#i f def DEBUG
printk ("Read % bytes, % left\n",
bytes read, |ength);
#endi f

/* Read functions are supposed to return the nunber
* of bytes actually inserted into the buffer */
return bytes read;

/* This function is called when sonebody tries to
* wite into our device file. */



#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON( 2, 2, 0)
static ssize t device wite(struct file *file,
const char *buffer,
size_t |ength,
loff _t *offset)
#el se
static int device wite(struct inode *inode,
struct file *file,
const char *buffer,
int |ength)
#endi f
{

int i;

#i f def DEBUG
printk ("device wite(%, %, %)",
file, buffer, length);
#endi f

for(i=0; i<length &% i <BUF_LEN;, i ++)
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
get _user (Message[i], buffer+i);
#el se
Message[i] = get_user(buffer+i);
#endi f

Message_Ptr = Message;

/* Again, return the nunmber of input characters used */
return i;

/* This function is called whenever a process tries to
* do an ioctl on our device file. W get two extra
* paraneters (additional to the inode and file



* structures, which all device functions get): the number
* of the ioctl called and the paraneter given to the
* joctl function.

* If the ioctl is wite or read/wite (meaning output
* is returned to the calling process), the ioctl cal
* returns the output of this function
*/
nt device_ioctl (
struct inode *inode,
struct file *file,
unsigned int ioctl_num/* The nunber of the ioctl */
unsi gned long ioctl _paran) /* The paraneter to it */

int i;
char *tenp;

#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
char ch;

#endi f

/* Switch according to the ioctl called */
switch (ioctl_num {
case | OCTL_SET_ MsG
/* Receive a pointer to a nessage (in user space)
* and set that to be the device's nessage. */

/* Get the paraneter given to ioctl by the process */
temp = (char *) ioctl_param

/* Find the I ength of the nessage */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
get _user(ch, tenp);
for (i=0; ch &% i<BUF_LEN; i++, tenp++)
get _user(ch, tenp);
#el se
for (i=0; get user(tenp) && i <BUF_LEN; i++, tenp++)



#endi f

/* Don’t reinvent the wheel - call device wite */
#if LI NUX_VERSI ON_CCODE >= KERNEL_VERSI O\( 2, 2, 0)
device_ wite(file, (char *) ioctl_param i, 0);

#el se

device write(inode, file, (char *) ioctl_param i);
#endi f

br eak;

case | OCTL_GET_MsG
/* Gve the current nessage to the calling
* process - the paraneter we got is a pointer,
*fill it */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
i = device_ read(file, (char *) ioctl_param 99, 0);
#el se
i = device_read(inode, file, (char *) ioctl_param
99);
#endi f
/* Warning - we assune here the buffer length is
* 100. If it's less than that we m ght overflow
* the buffer, causing the process to core dunp.

* The reason we only allow up to 99 characters is
* that the NULL which term nates the string al so
* needs room */

/* Put a zero at the end of the buffer, so it
* will be properly termnated */

put _user('\0', (char *) ioctl_paramti);

br eak;

case | OCTL_GET_NTH BYTE:
/[* This ioctl is both input (ioctl_param and



* output (the return value of this function) */
return Message[ioctl parani;
br eak;

return SUCCESS;

/* '\/bdule mcl aratIOHS KRR b S b S S Rk b e */

/* This structure will hold the functions to be called
* when a process does sonething to the device we
* created. Since a pointer to this structure is kept in
* the devices table, it can’t be local to
* init_nodule. NULL is for uninplenented functions. */
struct file_operations Fops = {
NULL, /* seek */
devi ce_read,
device wite,
NULL, /* readdir */
NULL, /* select */
device_ioctl, [* ioctl */
NULL, [* mmap */
devi ce_open,
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\( 2, 2, 0)
NULL, /* flush */
#endi f
device release /* a.k.a. close */

}s

/* Initialize the nmodule - Register the character device */

int init_nodul e()

{



int ret_val;

/* Register the character device (atleast try) */
ret _val = nodul e_register_chrdev( MVAJOR_NUM
DEVI CE_NANME,
&Fops) ;

/* Negative values signify an error */
if (ret_val < 0) {
printk ("% failed with %\ n",
"Sorry, registering the character device ",

ret_val);
return ret_val;

}
printk ("% The major device nunber is %l.\n",

"Regi steration is a success",

MAJOR_NUM ;
printk ("If you want to talk to the device driver,\n");
printk ("you' Il have to create a device file. \n");

printk ("W suggest you use:\n");

printk ("nmknod % c¢ % 0\ n", DEVI CE _FI LE NAME,
MAJOR_NUM ;

printk ("The device file nane is inportant, because\n");

printk ("the ioctl program assunes that’'s the\n");

printk ("file you'll use.\n");

return O;

/* Cd eanup - unregister the appropriate file from/proc */
voi d cl eanup_nodul e()

{

int ret;



/* Unregi ster the device */
ret = nmodul e_unregi ster_chrdev(MAJOR NUM DEVI CE_NAME) ;

/[* If there’s an error, report it */
if (ret <0)
printk("Error in nmodul e_unregister_chrdev: %\n", ret);

chardev.h

/* chardev.h - the header file with the ioctl definitions.

* The declarations here have to be in a header file,
* because they need to be known both to the kernel

* modul e (in chardev.c) and the process calling ioctl
* (ioctl.c)

*/

#i f ndef CHARDEV_H
#defi ne CHARDEV_H

#include <linux/ioctl.h>

/* The major device nunber. W can’t rely on dynanic
* registration any nore, because ioctls need to know
*it. */

#defi ne MAJOR_NUM 100

/* Set the nessage of the device driver */



#define | OCTL_SET_MSG _| OR(MAJOR_NUM O, char *)
/* 1OR neans that we're creating an ioctl conmand

* nunber for passing infornation froma user process
to the kernel nodule.

*

* The first arguments, MAJOR NUM is the major device
* nunber we’'re using.

* The second argument is the nunmber of the command
* (there could be several with different meanings).

* The third argunent is the type we want to get from
* the process to the kernel

/* Get the nessage of the device driver */

#define | OCTL_GET_MSG | OR(MAJOR NUM 1, char *)

/* This IOCTL is used for output, to get the nessage
* of the device driver. However, we still need the
* pbuffer to place the nmessage in to be input,
* as it is allocated by the process.
*/

/* Get the n"th byte of the nessage */

#define | OCTL_GET_NTH BYTE _| OAR(MAJOR_NUM 2, int)

/* The I OCTL is used for both input and output. It
* receives fromthe user a nunber, n, and returns
* Message[n]. */

/* The nane of the device file */
#defi ne DEVI CE_FI LE NAME "char _dev"

#endi f



ioctl.c

/* ioctl.c - the process to use ioctl’s to control the
* kernel nodul e

* Until now we could have used cat for input and

* output. But now we need to do ioctl’s, which require
* writing our own process.

*/

/* Copyright (C 1998 by Ori Ponerantz */

/* device specifics, such as ioctl nunbers and the
* major device file. */
#i ncl ude "chardev. h"

#i nclude <fcntl. h> /* open */
#i ncl ude <uni std. h> [* exit */
#i ncl ude <sys/ioctl.h> /[/* ioctl */

/* Functions for the ioctl calls */

ioctl _set_msg(int file_desc, char *message)

{

int ret_val;



ret_val = ioctl(file_desc, |IOCTL_SET_MSG message);

if (ret_val < 0) {
printf ("ioctl_set_nsg failed:%\n", ret_val);
exit(-1);
}
}

ioctl_get_msg(int file_desc)
{

int ret_val;

char message[ 100];

/* Warning - this is dangerous because we don’'t tell

* the kernel how far it’'s allowed to wite, so it

* mght overflow the buffer. In a real production

* program we would have used two ioctls - one to tell
* the kernel the buffer length and another to give

* it the buffer to fill

*/

ret_val = ioctl(file_desc, |IOCTL_GET_MSG message);

if (ret_val < 0) {
printf ("ioctl _get nsg failed: %\ n", ret_val);
exit(-1);

}

printf("get_nsg nessage: %s\n", nessage);

ioctl _get nth_byte(int file_desc)
{



int i;
char c;

printf("get_nth_byte message:");

i = 0;
while (c !'=0) {
c =ioctl(file_desc, |IOCTL_GET_NTH BYTE, i ++);

if (c <0) {
printf(
"ioctl _get nth byte failed at the %' th byte:\n", i);
exit(-1);

}

put char (c);
}
putchar('\n");
}

/* Main - Call the ioctl functions */
mai n()
{
int file desc, ret_val
char *msg = "Message passed by ioctl\n";

file_desc = open(DEVI CE_FI LE NAME, 0);
if (file_desc < 0) {
printf ("Can’'t open device file: %\n",
DEVI CE_FI LE_NAME)
exit(-1);
}



ioctl _get_nth_byte(file_desc);
ioctl _get msg(file_desc);
ioctl _set msg(file_desc, nsQ);

cl ose(fil e_desc);



