
LDP Author Guide

Mark F. Komarinski

VA Linux Systems

mkomarinski@valinux.com

Jorge Godoy

Conectiva S.A.
Publishing Department

godoy@conectiva.com

godoy@metalab.unc.edu

David C. Merrill

dcmerrill@mindspring.com

List the tools, procedures, and hints to get LDP authors up to speed and writing.

http://www.conectiva.com

Table of Contents
Chapter 1. About this Guide..1

1.1. Purpose / Scope of this Guide...1
1.2. About the LDP..1
1.3. Feedback...1
1.4. Copyrights and Trademarks..1
1.5. Acknowledgments and Thanks...2
1.6. Documents..2

Chapter 2. Introduction to the LDP and DocBook..4
2.1. The LDP..4
2.2. DocBook...4
2.3. Why DocBook instead of HTML or other formats?...4
2.4. Writing in DocBook XML..5
2.4.1. Differences between XML and SGML..5
2.4.2. Differences between DocBook 3.x and DocBook 4.x...6
2.5. For New Authors...6
2.5.1. Resources for New Authors...7
2.6. Mailing Lists...7

Chapter 3. The tools..8
3.1. DSSSL..8
3.1.1. Norman Walsh DSSSL..8
3.1.2. LDP DSSSL...8
3.2. DocBook DTD (version 4.1 or 3.1)..8
3.3. Jade...8
3.3.1. Jade..9
3.3.2. OpenJade..10
3.4. Jade wrappers..10
3.4.1. sgmltools−lite...10
3.4.2. Cygnus DocBook Tools...10
3.5. Editing tools..11
3.5.1. Emacs (PSGML)..11
3.5.2. VIM..14
3.5.3. WordPerfect 9 (Corel Office 2000)...15
3.5.4. epcEdit...15
3.5.5. nedit...16
3.6. CVS...19
3.6.1. Getting a CVS account...19
3.6.2. Other CVS repository notes...20
3.6.3. Common CVS Commands...20
3.7. Other/Reference..22
3.7.1. DocBook: The Definitive Guide..22
3.7.2. SGML templates..22
3.7.3. Aspell...22
3.7.4. ispell...22

Chapter 4. Using DocBook Tags..23
4.1. Introduction...23

LDP Author Guide

i

Table of Contents
4.2. Configuration needed..23
4.3. Creating and modifying catalogues..23
4.3.1. Explaining the terminology system...24
4.3.2. Useful commands for catalogues...25
4.4. Writing with DocBook elements..26
4.4.1. Useful commands...26
4.5. Encoding Indexes..29
4.6. Inserting Pictures..30
4.6.1. Alternative Methods...31
4.7. Tables..32
4.8. Listings and program codes..33
4.9. Crediting Translators and Converters...34
4.9.1. The <othercredit> Tag...35
4.9.2. The "Acknowledgements" section...35
4.9.3. The <revremark> tag...35
4.10. Tools & Hints..35
4.10.1. Compiling the sources...35
4.10.2. Inserting a summary on the initial articles page..37
4.10.3. Inserting indexes automatically...38
4.10.4. Making notes on the text while it is being written...39
4.10.5. Re−using parts of documents...39
4.11. Document samples..40
4.11.1. Article example..40
4.11.2. Book Example..41

Chapter 5. LDP Style Guide..42
5.1. Deciding on a Subject...42
5.2. Developing an Outline..42
5.3. Writing the Text..43
5.4. Editing and Proofing the Text...44
5.5. Maintaining Your HOWTO..45
5.6. References...45

Chapter 6. Additional Style−related Items..46
6.1. Date formats..46
6.2. Graphics formats...46
6.3. DocBook Versions..46
6.4. Obsolete Tags..46
6.5. Tag Minimization...46
6.6. Conventions..47

Chapter 7. Tips and Tricks with DocBook...48
7.1. Including Images...48
7.2. Naming separate HTML files...48
7.3. Using ldp.dsl...49

Chapter 8. Distributing your documentation ...50
8.1. Before you distribute...50

LDP Author Guide

ii

Table of Contents
8.1.1. Validating SGML code..50
8.1.2. Validating XML code..50
8.2. Copyright and Licensing issues..50
8.3. Submission to LDP...51
8.4. Maintaining Your HOWTO..51

Chapter 9. FAQs about the LDP ...52
Glossary...52

LDP Author Guide

iii

Chapter 1. About this Guide

1.1. Purpose / Scope of this Guide

This document was started on Aug 26, 1999 by Mark F. Komarinski after two day's worth of frustration
getting tools to work. If even one LDP author is helped by this, then I did my job.

The newest version of this document can be found at the LDP homepage http://www.linuxdoc.org. The
original DocBook, HTML, and other formats can be found there.

There are many ways to contribute to the Linux movement without actually writing code. One of the most
important is writing documentation, allowing each person to share their knowledge with thousands of others
around the world. This Guide is designed to help you get familiar with how the LDP works, and what tools
you'll need to write your own HOWTO.

1.2. About the LDP

The Linux Documentation Project (LDP) is working on developing free, high−quality
documentation for the GNU/Linux operating system. The overall goal of the LDP is to
collaborate in all of the issues of Linux documentation. This includes the creation of
"HOWTOs" and "Guides". We hope to establish a system of documentation for Linux
that will be easy to use and search. This includes the integration of the manual pages,
info docs, HOWTOs, and other documents.

−−LDP Manifesto located at http://www.linuxdoc.org/manifesto.html

The human readable version goes more like this: The LDP consists of a large group of volunteers that are
working on documentation for the Linux OS. The most visible documentation are the HOWTOs located at
http://www.linuxdoc.org/". This Guide focuses primarily on how to write your own HOWTOs for submission
to the LDP.

1.3. Feedback

Comments on this Guide may be directed to the LAG coordinator (<mkomarinski@valinux.com>).

1.4. Copyrights and Trademarks

Copyright 1999−2001 Mark F. Komarinski, David C. Merrill, Jorge Godoy

This manual may be reproduced in whole or in part, without fee, subject to the following restrictions:

The copyright notice above and this permission notice must be preserved complete on all complete or
partial copies

•

Any translation or derived work must be approved by the author in writing before distribution. •

Chapter 1. About this Guide 1

http://www.linuxdoc.org/
http://www.linuxdoc.org/manifesto.html
http://www.linuxdoc.org/
mailto:mkomarinski@valinux.com

If you distribute this work in part, instructions for obtaining the complete version of this manual must
be included, and a means for obtaining a complete version provided.

•

Small portions may be reproduced as illustrations for reviews or quotes in other works without this
permission notice if proper citation is given. Exceptions to these rules may be granted for academic
purposes: Write to the author and ask. These restrictions are here to protect us as authors, not to
restrict you as learners and educators. Any source code (aside from the DocBook this document was
written in) in this document is placed under the GNU General Public License, available via
anonymous FTP from the GNU archive.

•

1.5. Acknowledgments and Thanks

Thanks to everyone that gave comments as I was writing this. This includes David Lawyer, Deb Richardson,
Daniel Barlow, Greg Ferguson, Mark Craig and other members of the <discuss@linuxdoc.org> list.
Some sections I got from the HOWTO Index and the sgmltools documentation. The sections on network
access to CVS was partially written by Serek (<ser@serek.arch.pwr.wroc.pl>). Sections on
DocBook were written by Jorge Godoy (<godoy@conectiva.com>). A great deal of thanks to both of
them for their help.

1.6. Documents

This document uses the following conventions[1]:

Descriptions Appearance

Warnings
Caution

Warnings.

Hint
Tip: Hint.

Notes
Note: Note.

Information requiring special
attention

Warning

Warning.

File Names file.extension

Directory Names directory

Commands to be typed command

Applications Names application

Prompt of users command
under bash shell

bash$

Prompt of root users command
under bash shell

bash#

LDP Author Guide

1.5. Acknowledgments and Thanks 2

mailto:discuss@linuxdoc.org
http://www.linuxdoc.org/HOWTO/
mailto:ser@serek.arch.pwr.wroc.pl
mailto:godoy@conectiva.com
#FTN.AEN139

Prompt of user command
under tcsh shell

tcsh$

Environment Variables VARIABLE

Emphasized word word

Code Example <para>Beginning and end of paragraph</para>

LDP Author Guide

1.5. Acknowledgments and Thanks 3

Chapter 2. Introduction to the LDP and DocBook

2.1. The LDP

The Linux Documentation Project (LDP) was started to provide new users a way of quickly getting
information about a particular subject. It not only contains a series of books on administration, networking,
and programming, but also has a large number of smaller works on individual subjects, written by those who
have used it. If you want to find out about printing, you get the Printing HOWTO. If you want to do find out
if your Ethernet card works with Linux, grab the Ethernet HOWTO, and so on. At first, many of these works
were in text or HTML. As time went on, there had to be a better way of managing these documents. One that
would let you read it from a web page, a text file on a CD−ROM, or even your hand−held PDA. The answer,
as it turns out, is DocBook.

2.2. DocBook

To explain what DocBook is, we must first take a look at what SGML and XML are, and their relationship to
DocBook.

The Standard Generalized Markup Language (SGML) is a language that is based on embedding codes within
a document. In this way, it is similar to HTML, but there is where any similarities end. The power of SGML
is that unlike WYSIWYG (What You See Is What You Get), you don't define things like colors, or font sizes,
or even some kinds of formatting. Instead, you define elements (paragraph, section, numbered list) and let the
SGML processor and the end program worry about placement, colors, fonts, and so on. HTML does the same
thing, and is actually a subset of SGML. SGML has really three parts that make it up. First is the Structure,
which is what is commonly called the DTD, or Document Type Definition. The DTD defines the relationship
between each of the elements (or tags). The DocBook DTD, used to create this document, is an example of
this. The DTD lists the rules that the content must follow. Second is the DSSSL or Document Style
Semantics and Specification Language. The DSSSL tells the program doing the rendering how to convert the
SGML into something that a human can read. It tells the renderer to convert a title tag into 14 point bold
if it is going to RTF format, or to turn it into a <h1> tag if it is going to HTML. Finally there is the Content,
which is what gets rendered by the SGML processor and is eventually seen by the user. This paragraph is
content, but so is a graphic image, a table, a numbered list, and so on. Content is surrounded by tags to
separate each element.

The Extensible Markup Language (XML) has all the advantages of SGML, but is getting much more press
and development time. For the purposes of writing documentation, the differences are minimal.

This brings us back to DocBook, which is a DTD available for both SGML and XML. Since the tags
themselves do not change when moving from DocBook XML to DocBook SGML, much of this guide will
apply to both versions of the DTD.

2.3. Why DocBook instead of HTML or other formats?

DocBook provides for more than just formatting. You can automatically build indexes, tables of contents, and
links within the document or to outside. The Jade and OpenJade packages also let you export (I'll call it
render from here on) DocBook to LaTeX, info, text, HTML, and RTF. From these basic formats, you can
then create other formats such as MS Word, PostScript, PDF and so on. Programs like LyX allow you to

Chapter 2. Introduction to the LDP and DocBook 4

http://www.linuxdoc.org/HOWTO/Printing-HOWTO.html
http://www.linuxdoc.org/HOWTO/Ethernet-HOWTO.html

write in TeX format, then export it as DocBook SGML and render from SGML to whatever you chose. In the
end, DocBook is more concerned about the way elements work instead of the way they look. A big
distinction,and one that will let you write faster, since you don't have to worry about placement of
paragraphs, font sizes, font types, and so on.

2.4. Writing in DocBook XML

While tools for writing XML are not as developed as those for SGML, there are a few reasons why you may
want to start writing in XML:

Libraries for handling XML files are developing at a rapid pace. These utilities may make it easier
for new authoring tools to become available.

1.

Many popular word processing programs are now creating XML output. While it may not be
DocBook XML, this does make it easier for application writers to either add DocBook XML support,
or provide some method of translating between their format and DocBook XML.

2.

Everyone else is doing it. While this might not be a real reason, it allows the LDP to keep up−to−date
with similar projects. Tools, procedures, and issues can be worked out in a common framework.

3.

The real intent of this section is to get you familiar with the changes between writing in previous versions of
DocBook SGML and DocBook XML. Since the LDP supports DocBook SGML 3.1 (which much of this
Guide is written against) and up, and DocBook XML 4.1 and up, there will be a few differences.

In the following sections, if you see DocBook follwed by XML or SGML, it refers to the XML or SGML
version of DocBook. If DocBook is followed by a version number, it refers to both the XML and SGML
versions of DocBook.

2.4.1. Differences between XML and SGML

There are a few changes between writing XML and SGML. Handling these differences should be relatively
easy for most small documents, and many authors will not need to make any changes except for the XML
declaration and DocBook declaration at the start of their document.

For others, here is a list of what you should keep in mind when writing.

Most tags are case−dependent, or at least should have the same case. That is, you do not want to have
code like this:

•

<para>This part will fail XML validation</PARA>

The above being said, most XML−specific tags (like entity) have to be in all capital letters
(ENTITY).

•

All arguments to a tag have to be in quotes. This can be either single (') or double (") quotes, but no
reverse (`) or smart quotes are allowed.

•

Tags that have no close (like xref) have to have a trailing / as part of the tag. (<xref/>) •
Processing instructions that get sent to the DSSSL (like <?dbhtml>) have to have a question mark at
the end of the tag. The new tag would look like this:

•

<?dbhtml filename="foo"?>

If you're converting to XML, be sure file names refer to .xml files instead of .sgml. Some tools may
get confused if a .sgml file contains XML.

•

Tag minimizations (</>) are not supported. Their use is discouraged in DocBook SGML. •

LDP Author Guide

2.4. Writing in DocBook XML 5

2.4.2. Differences between DocBook 3.x and DocBook 4.x

The big changes between DocBook 3.x and 4.x involve depricated tags, changed tags, and new ones. Almost
all authors will run into a changed or depricated tag when going to DocBook 4.x. All tags that have been
depricated or changed for 4.x are listed in DocBook: The definitive guide, published by O'Reilly and
Associates.

The artheader tag has been changed to articleinfo;. Most other header tags have been
renamed to info.

•

The graphic tag is being depricated in DocBook 5.x. To prepare for this, you can instead use the
mediaobject tag. You can find out using mediaobject at Section 7.1.

•

The file format for imagedata has to be in capital letters. If you use lowercase or mixed−case
spellings for your file formats, it will fail.

•

Valid:

<imagedata format="EPS" fileref="foo.eps">

Invalid:

<imagedata format="eps" fileref="foo.eps">

2.5. For New Authors

If you are a new to the LDP and want to pick up an unmaintained HOWTO or write a new HOWTO
document, contact the HOWTO coordinator at <discuss@linuxdoc.org>. This is to make sure the
HOWTO coordinator can know who is working on what documentation.

Once that part is complete, you may write your documentation in the format of your choice and submit a draft
to <submit@linuxdoc.org> and the draft will be reviewed by an LDP volunteer. In a few short days
you will get the draft and comments from the volunteer. After applying the comments, you may send this
version to the ldp−submit list again for final submission into the LDP.

At this point, another LDP volunteer will translate your document into DocBook and send you the finished
DocBook document. From here on, all submissions to the LDP has to be in DocBook format. If you have
markup questions, you may ask the volunteer who assisted you, or ask the LDP DocBook list.

If you choose to start your document off in DocBook, there are plenty of templates to get you started:

http://www.linuxdoc.org/authors/template−ld/big−howto−template−ld.sgml − This template is
written by Stein Gojen and is based off the LinuxDoc template.

•

http://www.linuxdoc.org/authors/template/big−howto−template.sgml − This template is based on
Stein's work, but is much larger and complicated than the above. It uses more features of DocBook.

•

LDP Author Guide

2.4.2. Differences between DocBook 3.x and DocBook 4.x 6

mailto:discuss@linuxdoc.org
mailto:submit@linuxdoc.org
http://www.linuxdoc.org/authors/template-ld/big-howto-template-ld.sgml
http://www.linuxdoc.org/authors/template/big-howto-template.sgml

2.5.1. Resources for New Authors

This section contains a list of web sites and books that may be useful to new readers. If you have never used
DocBook before, or have never written technical documentation before, please take a look at these.

http://lwn.net/2000/features/DocBook/ − DocBook tutorial from Linux Weekly News •
http://docbook.org/tdg/html/quickref.html − Quick Reference Guide to DocBook v3.1 tags. •

2.6. Mailing Lists

There are a few mailing lists to subscribe to so you can take part in how the LDP works. First is
<discuss@linuxdoc.org>, which is the main discussion group of the LDP. To subscribe, send a
message with the subject reading "subscribe" to <discuss−subscribe@linuxdoc.org>. To
unsubscribe, send an e−mail with the subject of "unsubscribe" to
<discuss−unsubscribe@linuxdoc.org>.

Another list is the <docbook@linuxdoc.org> list, which is for markup or other questions about
DocBook itself. If you run into trouble with a particular markup tag, you can send your question here for
answers. You can subscribe to the DocBook list by sending a "subscribe" message to
<docbook−subscribe@linuxdoc.org>.

There is also a mailing list run by OASIS that can also answer DocBook questions. Please see
http://docbook.org/mailinglist/index.html for more information about the mailing lists. The LDP prefers our
own list, but only because the LDP list focuses more on tag usage than other questions such as formatting.

LDP Author Guide

2.5.1. Resources for New Authors 7

http://lwn.net/2000/features/DocBook/
http://docbook.org/tdg/html/quickref.html
mailto:discuss@linuxdoc.org
mailto:discuss-subscribe@linuxdoc.org
mailto:discuss-unsubscribe@linuxdoc.org
mailto:docbook@linuxdoc.org
mailto:docbook-subscribe@linuxdoc.org
http://docbook.org/mailinglist/index.html

Chapter 3. The tools
In this section, we will cover some of the tools that you will need or want to use to create your own LDP
documentation. I'll describe them here, and better define them later on, along with how to install them. If you
use some other tool to assist in writing LDP, please let me know and I'll add a blurb here for it.

3.1. DSSSL

The Normal Walsh version is required, the LDP is optional.

3.1.1. Norman Walsh DSSSL

http://nwalsh.com/docbook/dsssl/

The Document Style Semantics and Specification Language tells jade (see Section 3.3) how to render a
DocBook document into print or online form. The DSSSL is what converts a title tag into an <H1> tag in
HTML, or to 14 point bold Times Roman for RTF, for example. Documentation for DSSSL is located at the
same site. Note that modifying the DSSSL doesn't modify DocBook itself. It merely changes the way the
rendered text looks. The LDP uses a modified DSSSL (see below).

3.1.2. LDP DSSSL

http://www.linuxdoc.org/authors/tools/ldp.dsl

The LDP DSSSL requires the Norman Walsh version (see above) but is a slightly modified DSSSL to
provide things like a table of contents.

3.2. DocBook DTD (version 4.1 or 3.1)

Required − http://www.oasis−open.org/docbook/sgml/4.1/docbk41.zip or
http://www.oasis−open.org/docbook/sgml/3.1/docbk31.zip

The XML DTD is available from http://www.oasis−open.org/xml/4.1.2/.

The DocBook DTD defines the tags and structure of a DocBook document. Modifying the DTD, such as
adding a new tag, means that this DTD is no longer DocBook.

3.3. Jade

Jade and OpenJade are two of the programs that do most of the rendering and validation of code based on the
DTD and DSSSL. One of the following is required and should be installed after the DTD and DSSSL have
been installed.

Chapter 3. The tools 8

http://nwalsh.com/docbook/dsssl/
http://www.linuxdoc.org/authors/tools/ldp.dsl
http://www.oasis-open.org/docbook/sgml/4.1/docbk41.zip
http://www.oasis-open.org/docbook/sgml/3.1/docbk31.zip
http://www.oasis-open.org/docbook/xml/4.1.2

3.3.1. Jade

ftp://ftp.jclark.com/pub/jade/jade−1.2.1.tar.gz

Jade is the front−end processor for SGML and XML. It uses the DSSSL and DocBook DTD to perform the
verification and rendering from SGML and XML into the target format.

3.3.1.1. Using Jade

This is the quick and dirty way that should work for all distributions, no matter what one you are using.

Create a base directory to store everything such as /usr/local/sgml/. We'll call this
$_toolroot from here on.

1.

Install Jade, DocBook DTD, and DSSSL such that the base of each is under $_toolroot, creating: 2.

$_toolroot/jade−1.2.1♦
$_toolroot/dtd♦
$_toolroot/dsssl♦

You'll need to set the SGML_CATALOG_FILES environment variable to the catalogs that you have
under$_toolroot. You can do this with the command:

3.

bash$ export SGML_CATALOG_FILES=$_toolroot/dtd/docbook.cat:\
$_toolroot/dsssl/docbook/catalog:$_toolroot/jade−1.2.1/dsssl/catalog

Now you can start using Jade. To create individual HTML files: 4.
$_toolroot/jade−1.2.1/jade/jade −t sgml −i html \
−d $_toolroot/dsssl/docbook/html/docbook.dsl howto.sgml

To create one large HTML file, add −V nochunks to the jade command. 5.

3.3.1.2. Jade in XML mode

Once configured for XML, jade and openjade will work the same way as for SGML DocBook.

After extracting the XML DTD, you will want to make a symlink from the docbook.cat file to "catalog", the
default filename for jade/openjade catalogs. Replace $_xml_root with the location of your XML DTD.

bash$ cd $_xml_root
bash$ ln −s docbook.cat catalog
bash$ export SGML_CATALOG_FILES=$_xml_root/catalog:$_toolroot/dsssl/catalog:\
$_toolroot/dtd/docbook/catalog
bash$ jade −t sgml −i html −d style $_jade_path/pubtext/xml.dcl foo.xml

You'll need the catalogs for XML, the DSSSL, and DocBook, respectively. $_toolroot was defined
above.

Replace style with the DSSSL (ldp.dsl) you wish to use. The pointer to xml.dcl is required for jade
to work, and it has to be listed immediately before the pointer to your XML document. This file may
be in a different directory. Check your distribution.

LDP Author Guide

3.3.1. Jade 9

ftp://ftp.jclark.com/pub/jade/jade-1.2.1.tar.gz

You may get the following warnings when processing XML documents. They don't impact the
output, and the cause is being looked into.

<xml_dtd_pth>/ent/iso−lat2.ent:119:18:E: "X0176" is not a function name
<xml_dtd_pth>/ent/iso−lat2.ent:120:17:E: "X0178" is not a function name

If you want to convert your existing SGML DocBook into XML docbook, use this as your declaration (the
lines at the very start of your document).

<?xml version='1.0' encoding='ISO−8859−1'?>
<!DOCTYPE article PUBLIC '−//OASIS//DTD DocBook XML V4.1.2//EN'>

If you have followed LDP guidelines, there should be no other changes required to your document. Note that
there are changes between DocBook 3.x and 4.x that you may also have to take into account. You can get
more information at this in Section 2.4.2.

3.3.2. OpenJade

http://openjade.sourceforge.net/

An extension of Jade written by the DSSSL community. Some applications require jade, but are being
updated to support either software package.

3.4. Jade wrappers

These tools are optional and may be installed after Jade, the DSSSL, and DTD have been installed.

3.4.1. sgmltools−lite

http://sgmltools−lite.sourceforge.net/

This is the successor to the sgmltools project, which has been officially disbanded for over a year. Since then,
Cees de Groot has created a slightly different project, which acts as a wrapper to the jade SGML processor. It
hides much of the ugliness of the syntax. This author was able to install the old sgmltools package followed
by the sgmltools−lite and could format this document quite easily. There's even a man page for sgmltools
showing syntax.

3.4.2. Cygnus DocBook Tools

May be Red Hat specific − http://www.redhat.com/

Red Hat distributes three packages, starting with the 6.2 release, that include DocBook support and some
tools. The tools are easily installed, allowing you to focus more on writing than wrestling with the tools.
TeTex, Jade, and JadeTeX must be installed first. All three of these packages are available on the installation

LDP Author Guide

3.3.2. OpenJade 10

http://openjade.sourceforge.net/
http://sgmltools-lite.sourceforge.net/
http://www.redhat.com/

CD.

3.4.2.1. Using the Cygnus Tools

These tools are provided with Red Hat 6.2. Make sure the following packages are installed:

sgml−common−0.1−8.noarch •
docbook−3.1−4.noarch •
stylesheets−1.54.13rh−1.noarch •

Red Hat has the latest version on their web site:
http://www.redhat.com/support/errata/RHBA−2000022−01.html.

Download/get/sneaker−net the RPMs to your machine and install in the usual manner (become root, then
rpm −Uvh filename). Once the RPMs are installed, you can use the following commands to render
DocBook:

bash$ db2html filename

Renders DocBook into HTML. A subdirectory with the filename (minus the .sgml extension) is created and
the HTML files are placed there.

bash$ db2pdf filename

Renders DocBook into a PDF file. Note that there is currently a problem with db2pdf, and pd2ps caused by
JadeTeX. This has been registered as a bug with RedHat.

3.5. Editing tools

The following tools may be used to create, edit, or validate your HOWTO.

3.5.1. Emacs (PSGML)

Optional − http://www.lysator.liu.se/~lenst/about_psgml/

Emacs has an SGML writing mode called psgml that is a major mode designed for editing SGML and XML
documents. It provides "syntax highlighting" or "pretty printing" features that make SGML tags stand out, a
way to insert tags other than typing them by hand, and the ability to validate your document while writing.

For users of Emacs, it's a great way to go, and many believe it to allow more versatility than any other SGML
documentation tool. It works with DocBook, LinuxDoc and other DTDs equally well.

LDP Author Guide

3.4.2. Cygnus DocBook Tools 11

http://www.redhat.com/support/errata/RHBA-2000022-01.html
http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=9670
http://www.lysator.liu.se/~lenst/about_psgml/

3.5.1.1. Writing SGML using PSGML

3.5.1.1.1. Introduction

If you have installed a recent distribution, you may already have PSGML installed for use with Emacs. To
check, start Emacs and look for the PSGML documentation (C−himpsgml).

From here on, we assume you have PSGML installed for use with a recent version of GNU Emacs. If that all
went by too fast for you, see the free chapter from Bob Ducharme's SGML CD book:
http://www.snee.com/bob/sgmlfree/psgmqref.html.

3.5.1.1.2. Updating your .emacs to use PSGML

If you want GNU Emacs to enter PSGML mode when you open a .sgml file and be ready for SGML editing,
make sure PSGML can find the DocBook DTD. If your distribution already had PSGML set up for use with
GNU Emacs, you probably do not have to do anything to get this to work. Otherwise, you may need to set an
environment variable that tells PSGML where to look for the SGML catalog (the list of DTDs).

For example:

bash$ export SGML_CATALOG_FILES=/usr/lib/sgml/catalog

Then add something like the following to your .emacs file:

;; ***
;; set up psgml mode...
;; use psgml−mode instead of emacs native sgml−mode
;;

(autoload 'sgml−mode "psgml" "Major mode to edit SGML files." t)
(setq auto−mode−alist
 (append
 (list
 '("\\.sgm$" . sgml−mode)
 '("\\.sgml$" . sgml−mode)
)
 auto−mode−alist))

;; set some psgml variables

(setq sgml−auto−activate−dtd t)
(setq sgml−omittag−transparent t)
(setq sgml−balanced−tag−edit t)
(setq sgml−auto−insert−required−elements t)
(setq sgml−live−element−indicator t)
(setq sgml−indent−step nil)

;; create faces to assign to markup categories

(make−face 'sgml−comment−face)
(make−face 'sgml−start−tag−face)
(make−face 'sgml−end−tag−face)
(make−face 'sgml−entity−face)
(make−face 'sgml−doctype−face) ; DOCTYPE data
(make−face 'sgml−ignored−face) ; data ignored by PSGML
(make−face 'sgml−ms−start−face) ; marked sections start

LDP Author Guide

3.5.1. Emacs (PSGML) 12

http://www.snee.com/bob/sgmlfree/psgmqref.html

(make−face 'sgml−ms−end−face) ; end of marked section
(make−face 'sgml−pi−face) ; processing instructions
(make−face 'sgml−sgml−face) ; the SGML declaration
(make−face 'sgml−shortref−face) ; short references

;; view a list of available colors with the emacs−lisp command:
;;
;; list−colors−display
;;
;; please assign your own groovy colors, because these are pretty bad
(set−face−foreground 'sgml−comment−face "coral")
;(set−face−background 'sgml−comment−face "cornflowerblue")
(set−face−foreground 'sgml−start−tag−face "slateblue")
;(set−face−background 'sgml−start−tag−face "cornflowerblue")
(set−face−foreground 'sgml−end−tag−face "slateblue")
;(set−face−background 'sgml−end−tag−face "cornflowerblue")
(set−face−foreground 'sgml−entity−face "lavender")
;(set−face−background 'sgml−entity−face "cornflowerblue")
(set−face−foreground 'sgml−doctype−face "lavender")
;(set−face−background 'sgml−doctype−face "cornflowerblue")
(set−face−foreground 'sgml−ignored−face "cornflowerblue")
;(set−face−background 'sgml−ignored−face "cornflowerblue")
(set−face−foreground 'sgml−ms−start−face "coral")
;(set−face−background 'sgml−ms−start−face "cornflowerblue")
(set−face−foreground 'sgml−ms−end−face "coral")
;(set−face−background 'sgml−ms−end−face "cornflowerblue")
(set−face−foreground 'sgml−pi−face "coral")
;(set−face−background 'sgml−pi−face "cornflowerblue")
(set−face−foreground 'sgml−sgml−face "coral")
;(set−face−background 'sgml−sgml−face "cornflowerblue")
(set−face−foreground 'sgml−shortref−face "coral")
;(set−face−background 'sgml−shortref−face "cornflowerblue")

;; assign faces to markup categories

(setq sgml−markup−faces '
 (
 (comment . sgml−comment−face)
 (start−tag . sgml−start−tag−face)
 (end−tag . sgml−end−tag−face)
 (entity . sgml−entity−face)
 (doctype . sgml−doctype−face)
 (ignored . sgml−ignored−face)
 (ms−start . sgml−ms−start−face)
 (ms−end . sgml−ms−end−face)
 (pi . sgml−pi−face)
 (sgml . sgml−sgml−face)
 (shortref . sgml−shortref−face)
))

;; tell PSGML to pay attention to face settings
(setq sgml−set−face t)
;; ...done setting up psgml−mode.
;; ***

Then restart Emacs

LDP Author Guide

3.5.1. Emacs (PSGML) 13

3.5.1.1.3. SGML Smoke Test

Try the following smoke test. Start a new file, /tmp/test.sgml for example, and enter the following:

<!DOCTYPE test [
<!ELEMENT test − − (#PCDATA)>
]>

Enter C−cC−p. If Emacs manages to parse your DTD, you will see Parsing prolog...done in the minibuffer.
Try C−c C−e RETURN to insert a <test> element. If things are working correctly, you should see the
following in Emacs:

<!DOCTYPE test [
<!ELEMENT test − − (#PCDATA)>
]>
<test></test>

3.5.1.1.4. Writing a New HOWTO in DocBook

Start a new file for your HOWTO and enter the following:

<!DOCTYPE ARTICLE PUBLIC "−//OASIS//DTD DocBook V3.1//EN">

Enter C−cC−p and hold your breath. If everything goes as planned, you will see Emacs chewing for a few
seconds and then Parsing prolog...done in the minibuffer.

At this point, enter C−cC−eRETURN to insert an <article> element and proceed to write your HOWTO.

3.5.1.1.5. Quick Reference for Emacs with PSGML

See Nik Clayton's primer for FreeBSD documentation:
http://www.freebsd.org/tutorials/docproj−primer/psgml−mode.html

3.5.2. VIM

http://www.vim.org

No mention of Emacs is complete without talking about vi. The VIM (Vi IMproved) editor has the
functionality of regular vi, but also has an SGML mode that will color−coordinate your screen to show where
tags are.

3.5.2.1. Getting Started

The vim program comes in many parts. There is the plain vim program, which is compatibile with the vi
program and its commands. Red Hat users will want the vim−common and vim−minimal packages. Next is
the enhanced vim, which includes the highlighting and other features of vim over regular vi. Red Hat users
will want vim−enhanced. Last, but certainly not least, is the X interface, which gives a graphical interface,

LDP Author Guide

3.5.1. Emacs (PSGML) 14

http://www.freebsd.org/tutorials/docproj-primer/psgml-mode.html
http://www.vim.org

menus, and mouse control. To separate this from vim or vi, the command for graphical access is called gvim.

3.5.2.2. Loading or starting new documents

In both vim and gvim modes, .sgml files will be automatically recognized and enter into "sgml mode". A
series of known DocBook tags have been entered into vim and will he highlighted in brown if a tag is known.
If it isn't, it will appear in light blue. attributes to known tags are in light blue, and values for the attributes are
in pink. From here on, you can use regular vi commands to navigate and edit.

While VIM has an XML mode, this mode will not highlight known and unknown DocBook tags. You can
still force VIM into SGML mode if you like using the :set ft=sgml command. Note that this will not have
any affect on the file or its contents, only the highlighting within VIM.

3.5.3. WordPerfect 9 (Corel Office 2000)

http://www.corel.com/

WordPerfect 9 for the MS Windows platform has support for SGML and DocBook 3.0. WordPerfect 9 for
Linux has no SGML capabilities.

This is the least expensive of the commercial applications that support SGML.

3.5.4. epcEdit

http://www.tksgml.de/

The epcEdit program allows you to visually edit SGML files. It has the advantages of not needing to know
Emacs or vi before starting, and is cross−platform, working in both Windows and Linux. This is a
commercial application, and pricing can be found at http://www.tksgml.de/pricing.html

Along with visual editing, epcEdit will also validate documents on loading, and on demand by using the
Document−>Validate command.

Figure 3−1. epcEdit screen shot

LDP Author Guide

3.5.2. VIM 15

http://www.corel.com/
http://www.tksgml.de/
http://www.tksgml.de/pricing.html

3.5.5. nedit

http://nedit.org

To be fair, nedit is more for programmers, so it might seem a bit of overkill for new users and especially
non−programmers. All that aside, it's extremely powerful, allowing for color coding of tags. Unlike epcEdit,
nedit doesn't allow you to automatically insert tags or automatically validate your code. However, it does
allow for shell commands to be run against the contents of the window (as opposed to saving the file, then
checking). In a few minutes, I was able to set up nsgmls to validate the SGML and aspell to do my spell
checking.

Figure 3−2. nedit screen shot

LDP Author Guide

3.5.5. nedit 16

http://nedit.org

3.5.5.1. Using nedit

For writing new documentation, it is recommended that you download and use the LDP DocBook template.
Once you have the file, you can start up nedit and begin editing. If the file is saved with a .sgml extension,
nedit will load the file up with SGML/HTML tags enabled. You can turn this on explicitly using the
Preferences−>Language Mode−>SGML HTML command.

3.5.5.2. Tips and tricks with nedit

Since you can feed the contents of your window to outside programs, you can easily extend nedit to perform
repetitive functions. The example you'll see here is to validate the SGML code using nsgmls.

Select Preferences−>Default Settings−>Customize Menus−>Shell Menu.... This will bring up the Shell
Command dialog box, with all the shell commands nedit has listed under the Shell menu. Under Menu Entry,
enter "SGML Validate". This will be the entry you'll see on the screen. Under Accelerator, press Alt−S. Once
this menu item is set up, you can press Alt−S to have the SGML Validate automatically run. Under
Command Input, select window, and under Command Output, select dialog. Under Command to Execute,
enter nsgmls −sv. Note that nsgmls has to be in your PATH for this to work properly.

Figure 3−3. Adding shell commands to nedit

LDP Author Guide

3.5.5. nedit 17

Click OK and you'll now be back at the main nedit screen. Load up an SGML file, and select Shell−>SGML
Validate or press Alt−S. The nedit program will fire up and check the contents of the window. The reason for
using −sv is that the −v tells nsgmls to output the version of the program, so you'll always get output and
know that nsgmls has run. If all you get is a version number, then there are no errors with the document. If
there are errors, then they'll be listed in the separate window for you to see. If you have line numbers turned
on (using Preferences−>Show Line Numbers) then finding the errors is much simpler, as nsgmls will list
errors by their line number.

Figure 3−4. nsgmls output on success

LDP Author Guide

3.5.5. nedit 18

3.6. CVS

The LDP is providing CVS access to authors. There are a few good reasons for this:

CVS will keep an off−site backup of your documents. In the event that you hand over a document to
another author, they can just retrieve the document from CVS and continue on. In the event you need
to go back to a previous version of a document, you can retrieve it as well.

1.

It's great to have many people working on the same document. You can have CVS tell you what
changes were made while you were editing your copy by another author, and integrate those changes
in.

2.

CVS keeps a log of what changes were made. These logs (and a date stamp) can be placed
automatically inside the document when you use some special tags that get processed before the
SGML processor.

3.

It can provide for a way for a program to automatically update the LDP web site with new
documentation as it's written and submitted. This is not in place yet, but it is a potential goal.
Currently, CVS updates signal the HOWTO coordinator to update the LDP web page, meaning that if
you use CVS, you're not required to e−mail your SGML code.

4.

If you're completely new to CVS, there are a few web pages you may want to look at which can help you out:

http://www.sourcegear.com/CVS/Docs/blandy•
https://wroclaw.art.pl/~ser/docs/cvs.html•

3.6.1. Getting a CVS account

First you'll need to get an account at the LDP's CVS Repository. This is pretty much the root directory that is
used by CVS, with various projects (HOWTOs, mini HOWTOs, etc.) created as subdirectories of it.

You will need to create a hashed password and userid for your account. The hashed password allows you to
send an encrypted password to the CVS group without them needing to know your password. You can do this
with the following command, from bash (or sh):

bash$ echo your_password | perl −e "print crypt(<>,\
join '',('.', '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]),\"\n\""

Take the output of this command, and send it with your proposed userid to
<cvsadmin@cvslist.linuxdoc.org>. Your unique CVSROOT directory will be created and you'll
get an e−mail with a response. When you get your response, log into your CVSROOT and make sure
everything is set up properly:

bash$ export CVSROOT=:pserver:your_userid@cvs.linuxdoc.org:/cvsroot
bash$ cvs −d $CVSROOT login

(Replace the your_userid with what you were sent in the response e−mail).

You will be asked for your password, and then be given access to the CVS Repository in read−write mode.
Once you've used cvs login once and have been given access to the system, your password is stored in
.cvspass and you will not have to use cvs login again. Just set the CVSROOT and continue on. You can
get the entire repository with this command:

LDP Author Guide

3.6. CVS 19

http://www.sourcegear.com/CVS/Docs/blandy
https://wroclaw.art.pl/~ser/docs/cvs.html
mailto:cvsadmin@cvslist.linuxdoc.org

bash$ cvs get LDP

Or you can get the SGML source for your own document with these commands:

bash$ cvs get LDP/howto/docbook/YOUR−HOWTO.sgml
bash$ cvs get
guide/docbook/YOURGUIDE

3.6.2. Other CVS repository notes

3.6.2.1. Anonymous CVS access

Anonymous CVS access is available for those who do not require an account (such as those wishing to
publish LDP documents). This repository is read−only:

bash$ cvs −d :pserver:cvs@anoncvs.linuxdoc.org:/cvsroot login

As a password, use cvs. You can then get LinuxDoc modules as above. Note that changes to the anoncvs site
may be a half an hour behind the main site.

3.6.2.2. CVS Files via web

You can access the CVS repository via the web at http://cvsweb.linuxdoc.org/index.cgi/LDP.

3.6.2.3. Graphical access to CVS

There are graphical interfaces to CVS, and you can get a list of them at http://freshmeat.net/appindex. Search
for CVS.

3.6.3. Common CVS Commands

3.6.3.1. Updating files and CVS

CVS has a special tag, Id, that you can use to automatically insert the date and version directly into the
document. After committing, CVS will turn this tag into $Id: cvs.xml,v 1.2 2001/03/01 19:34:06 markk Exp $
. By including this tag in your document, you can have that automatically change each time you change the
file, allowing the revision mark to increment each time.

When you're ready to upload changes to the CVS server, use the command cvs ci −m "comment"
YOUR−HOWTO.sgml. The −m "comment" isn't necessary, but if you don't include it, you'll be brought into
the editor (usually vi, or whatever your EDITOR environment variable is) and be given the chance to add a
comment about the changes.

You can follow more of the CVS discussion on the discuss list.

LDP Author Guide

3.6.2. Other CVS repository notes 20

http://cvsweb.linuxdoc.org/index.cgi/LDP
http://freshmeat.net/appindex

If you are using the LDP CVS tree while developing your document, the LDP will need to be notified when
your document is ready to be published. E−mail should be sent to <submit@linuxdoc.org>. Indicate
within the message the title of your document and the relative path to the file(s) in the LDP CVS tree.

3.6.3.2. Adding new files

If your document contains graphics or multiple files, you may come to a point where you need to add new
files to your cvs repository.

To do this, make sure that your HOWTO is in its own directory. You may want to coordinate with the people
at <submit@linuxdoc.org> to ensure you can add graphics or other files to your HOWTO.

Once this is set up, use cvs get to get the latest copy of your HOWTO. In most cases, the command will be
similar to cvs get LDP/howto/docbook/YOUR−HOWTO/ assuming that your CVSROOT is set.

Copy in the files that you want to add to the repository. The command cvs add filename will tell the CVS
server that you want to add filename to the repository. You can now use cvs commit to commit the
changes to the CVS server. When finished, the files are now part of the repository.

3.6.3.3. Creating Tag Releases

Occasionally, you may want to create what you call a stable release. This is an effective way to signal to the
LDP coordinator that your document is ready for release. This tag release indicates a specific version of your
HOWTO. This allows you to continue creating new versions of your HOWTO without them being
accidentally put on the web site.

The downside of creating a stable (or tag) release is that it uses the current version of the files − the last ones
submitted. Use cvs commit to make sure that your files are synced up, then use cvs −q tag Release−x_y.

You can replace the Release−x_y with whatever you like. However, to create a wall between CVS
revisions and tag releases, the tag release nust start with a letter, and contain letters, numbers, hyphens, or
underscores.

3.6.3.4. Recovering old versions

There you are, typing away, when you screw up. Real bad. Doesn't matter what it is, but suffice it to say that
you've toasted not only the version on your local drive, but created a new version on the CVS server. What
you need to do is go back in time and resurrect and older version of your file.

To do this, you'll need to know the version number of the file you want to retrieve. cvs diff will give a list of
revisions if there are differences. You can pick the revision number, subtract one, and that is probably the
revision you want to look at.

The command cvs −Q update −p −r revision filename will output to stdout the contents of the
revision version of filename. You can pipe it to more or redirect the output to a file. Conveniently,
you can redirect stdout to a file called filename. Your local file is now the revision you want, and cvs
update will update the CVS server with the new (old) version of filename.

LDP Author Guide

3.6.3. Common CVS Commands 21

mailto:submit@linuxdoc.org
mailto:submit@linuxdoc.org

3.7. Other/Reference

The items in this section are reference books or other utilities that can't quite be categorized (yet).

3.7.1. DocBook: The Definitive Guide

http://www.docbook.org/

This book was released by O'Reilly in October 1999, and is a great reference to DocBook. I have not found it
to be a great practical book, and much of the emphasis is on XML, but the DocBook tags for version 3.1 are
all listed in a handy format. You can pick it up at the book vendor of choice. The entire book is also available
online (in HTML and SGML formats) at the above URL.

3.7.2. SGML templates

Optional − http://www.linuxdoc.org/authors/index.html#resources

Contains links to SGML templates and their resulting HTML output to help you see what your document will
look like. Many of the tags just need to be replaced with information unique to your HOWTO.

3.7.3. Aspell

Optional − http://aspell.sourceforge.net/

This spell checking application can work around SGML tags, and only spell check the content within the
tags. Older version of ispell will try to spell check the tags, causing errors at every new tag.

3.7.4. ispell

Optional − http://www.cs.hmc.edu/~geoff/ispell.html

The ispell program is distributed with RedHat (and possibly other distros) and also ignores markup tags.

LDP Author Guide

3.7. Other/Reference 22

http://www.docbook.org/
http://www.linuxdoc.org/authors/index.html#resources
http://aspell.sourceforge.net/
http://www.cs.hmc.edu/~geoff/ispell.html

Chapter 4. Using DocBook Tags

4.1. Introduction

DocBook defines a set of markup elements useful for marking up text so that the text can then be transformed
into several different formats: HTML, XML, RTF, TeX, and others.

The idea is to write just once and reach the largest possible number of people with the information.

Digital information not stored properly tends to get lost. Because DocBook uses standard ASCII characters, it
is easy to index and search DocBook document directly.

The SGML systems use markups to describe their data. DocBook holds over 300 markup elements each one
with several attributes which can assume several values; these can be fixed or defined by the document / style
that the author has used.

Just to remind you, if any changes are made to DocBook's DTD, it's no longer DocBook.

4.2. Configuration needed

The identifier systems used by SGML and by some tools are based on catalogues that perform the translation
of these identifiers to files that hold the necessary definitions.

The section on tailoring a catalogue (see Section 4.3) will give more details about these files.

For tools to be able to find the necessary catalogue(s), the environment variable
SGML_CATALOG_FILES should be set, as shown in the following example:

$ export SGML_CATALOG_FILES="/usr/lib/sgml/catalog"

This is the only necessary additional configuration for DocBook tools and the like to work correctly on your
platform.

4.3. Creating and modifying catalogues

A catalogue is a text file containing the translation rules of the public identifier to system's files.

They make it easy to use DocBook, for they allow each user to have their files installed in a different place
(e.g. your home directory, /usr/local/sgml, or in any other place) though no other change on the
document is necessary for it to be processed and "compiled".

Example 4−1. Example of catalogue

Chapter 4. Using DocBook Tags 23

−− Catalogue for the Conectiva Styles −−

OVERRIDE YES

PUBLIC "−//Conectiva SA//DTD DocBook Conectiva variant V1.0//EN"
 "/home/ldp/styles/books.dtd"

DELEGATE "−//OASIS"
 "/home/ldp/SGML/dtds/catalog.dtd"

DOCTYPE BOOK /home/ldp/SGML/dtds/docbook/db31/docbook.dtd

−− EOF −−

Comment. Comments start with "−−" and follow to the end of the line.

The public type association "−//Conectiva SA//DTD books V1.0//EN" with the file
books.dtd on the directory /home/ldp/styles.

Comment signifying the end of the file.

As in the example above, to associate an identifier to a file just follow the sequence shown:

Copy the identifier PUBLIC1.
Type the identifying text 2.
Indicate the path to the associated file 3.

4.3.1. Explaining the terminology system

Notice the identifier

"−//Conectiva SA//DTD books V1.0//EN"

Its formation is not random and follows some pre−defined conditions.

The token "−" indicates that the used identifier isn't a registered type. Only a few identifiers are registered
and those usualy belong to entities like ISO, IEEE, and others.

The second part of the identifier defines the name of the organization that created it. On the example above,
Conectiva S.A.

The one before the last defines the contents (in this case a DTD[2]) and the name of the identified text.

The last element indicates the language in which the document was written. Since DocBook is a DTD written
in English, the language is EN. The two letter code recommended is the ISO identification of the language.

More information can be obtained at OASIS Technical Resolution 9401:1997 (Amendment 2 to TR 9401).

LDP Author Guide

4.3.1. Explaining the terminology system 24

#FTN.AEN936
http://www.oasis-open.org/html/a401.htm

4.3.2. Useful commands for catalogues

The most common commands to be used on catalogues are:

PUBLIC

The keyword PUBLIC maps public identifiers for identifiers on the system.

SYSTEM

The SYSTEM keyword maps system identifiers for files on the system.

SYSTEM "http://nexus.conectiva/utilidades/publicacoes/livros.dtd" "publicacoes/livros.dtd"

SGMLDECL

The keyword SGMLDECL designates the system identifier of the SGML statement that should be
used.

SGMLDECL "publishings/books.dcl"

DTDDECL

Similar to the SGMLDECL the keyword DTDDECL identifies the SGML statement that should be
used. DTDDECL makes the association of the statement with a public identifier to a DTD.
Unfortunately, this association isn't supported by the open source tools available. The benefits of this
statement can be achieved somehow with multiple catalogue files.

DTDDECL "−//Conectiva SA//DTD livros V1.0//EN" "publicacoes/livros.dcl"

CATALOG

The keyword CATALOG allows a catalogue to be included inside another. This is a way to make use
of several different catalogues without the need to alter them.

OVERRIDE

The keyword OVERRIDE informs whether an identifier has priority over a system identifier. The
standard on most systems is that the system identifier has priority over the public one.

DELEGATE

The keyword DELEGATE allows the association of a catalogue to a specific type of public identifier.
The clause DELEGATE is very similar to the CATALOG, except for the fact that it doesn't do anything
until a specific pattern is specified.

DOCTYPE

LDP Author Guide

4.3.2. Useful commands for catalogues 25

If a document starts with a type of document, but has no public identifier and no system identifier the
clause DOCTYPE associates this document with a specific DTD.

4.4. Writing with DocBook elements

An editor capable of inserting elements according to the DTD will help a lot since it will enforce the DTD.
This way you can be sure that no invalid elements were added anywhere in your document.

In order to ensure that future changes are as easy as possible, authors should try to keep compatibility with
theXML version of the DocBook DTD. This means keeping element names in upper case, using double
quotes in all attributes, not using "markup minimizations" (explained below), and not omitting end tags. Most
tools that automatically insert elements (like psgml+emacs) follow these rules automatically or with some
fine tuning.

There are several forms of markup minimization. These include empty tags. One example of tag
minimization is that instead of typing the end tag you simply type </>. Another example, as said before, is
ommiting tags. You can see both examples below:

<para>I'm using <emphasis>here</>, normal text here,
and <>here</> I emphasized the text again, with empty tags.</para>

Each type of document created has a specific structure, and examples of documents can found later in this
document. (see Section 4.11).

Considering the explanation above we can proceed to instructions on how to write a document using
DocBook.

4.4.1. Useful commands

Table 4−1 shows some commands that are useful for generating generic documents. Remember that some
elements are valid only on some contexts.

Tip: Sometimes the appearance of a particular tag changes from one format to another. As a
beginner in DocBook writing, you may wish to see how your document looks in several
formats before you publish them.

Note: Since the formatting depends on the output style chosen, it's recommended to use as
much markup as possible. Even if the appearance of the output doesn't seem to change with
the standard output style, there may be specific output formats that will make these tags stand
out.

Table 4−1. Useful commands

Description Command Result

E−mail <email>address@domain</email> <address@domain>

LDP Author Guide

4.4. Writing with DocBook elements 26

mailto:address@domain

address

About the
author

<author>...</author> (see example below)

Author's name

<firstname>Mary</firstname>
<othername>Margaret</othername>
<surname>O'Hara</surname>

Mary Margaret
O'Hara

Keys' name
(printings on
the keyboard)

<keycap>F1</keycap> F1

Symbol
represented
by the keys

<keysym>KEY_F1</keysym> KEY_F1

Key's code <keycode>0x3B</keycode> 0x3B

Combinations
or sequences
of keys

<keycombo>
<keycap>Ctrl</keycap>
<keycap>S</keycap>

</keycombo>
Ctrl−S

Program
Menus

<guimenu>File</guimenu> File

Menu Items <guimenuitem>Save</guimenuitem> Save

Menu
Sequences

<menuchoice>
<shortcut>

<keycombo>
<keycap>Ctrl</keycap>
<keycap>S</keycap>

</keycombo>
</shortcut>
<guimenu>File</guimenu>
<guimenuitem>Save</guimenuitem>

</menuchoice>

File−>Save (Ctrl−S)

Mouse Button <mousebutton>left</mousebutton> left

Command
Names

<command>command</command> command

Application
Names

<application>application</application> application

Text
Bibliographical
Reference

<citation>reference</citation> [reference]

Quote

<blockquote>
<attribution>Text Author</attribution>
<para>Quote Text.</para>

</blockquote> Quote Text.
−−Text Author

Index (NA) See Section 4.5.

LDP Author Guide

4.4. Writing with DocBook elements 27

File Names <filename>file</filename> file

Directories <filename id="directory">directory</filename> directory/

Emphasize
Text[a]

<emphasis>text</emphasis> text

Footnotes
<footnote>

<para>Footnote text</para>
</footnote>

(See note at the end
of this table for an
example)

URLs <ulink url="http://www.conectiva.com>Conectiva S.A.</> Conectiva S.A.

Itemizeda
(unnumberd)
List

<itemizedlist>
<listitem>

<para>item</para>
</listitem>
<listitem>

<para>item</para>
</listitem>

</itemizedlist>

item •
item •

Ordered
(numbered)
List

<orderedlist>
<listitem>

<para>item</para>
</listitem>
<listitem>

<para>item</para>
</listitem>

</orderedlist>

item 1.
item 2.

Segmented
List

<segmentedlist>
<title>Binary to decimal conversion</title>
<segtitle>Binary</segtitle>
<segtitle>Decimal</segtitle>
</seglistitem><seg>00</seg><seg>0</seg>
</seglistitem>
<seglistitem><seg>01</seg><seg>1</seg>
</seglistitem>
<seglistitem><seg>10</seg><seg>2</seg>
</seglistitem>

</segmentedlist>

Binary to Decimal
Conversion

Binary: 00

Decimal: 0

Binary: 01

Decimal: 1

Binary: 10

Decimal: 2

Variable List <variablelist>
<varlistentry>

<term>Entry 1</term>
<listitem>

<para>Description</para>
</listitem>

</varlistentry>
<varlistentry>

<term>Entry 2</term>
<listitem>

<para>Description</para>
</listitem>

Entry 1

Description

Entry 2

Description

LDP Author Guide

4.4. Writing with DocBook elements 28

http://www.conectiva.com

</varlistentry>
</variablelist>

Simple Lists

<simplelist type="horiz" columns="3">
<member>1</member>
<member>2</member>
<member>3</member>
<member>4</member>
<member>5</member>
<member>6</member>

</simplelist>
<simplelist type="inline">

<member>A</member>
<member>B</member>
<member>C</member>
<member>D</member>
<member>E</member>
<member>F</member>

</simplelist>

1 2 3

4 5 6

A, B, C, D, E, F

Pictures (NA) See Section 4.6

Table (NA) See Section 4.7

Programs List (NA) See Section 4.8

Glossary

<glossentry>
<glossterm>Term</glossterm>
<glossdef>

<para>Definition</para>
</glossdef>

</glossentry>

(See the glossary at
the end of this
document)

Crossed
References

<section id="secao">
...
</section>
<section id="reference the other section">
...
<para>Please, see<xref linkend="secao"> for more information.

(NA)

Notes:
a. Text can be enphasized in a few ways. The most common ways are italics and bold. DocBook, however,
supports only italics. The use of bold requires additional settings on the stylesheet used.

4.5. Encoding Indexes

The generation of indexes depends on the markups inserted in the text.

Such markups will be processed afterwards by an external tool and will generate the index. An example of
such a tool is the collateindex.pl script (see Section 4.10.1). Details about the process used to generate
these indexes are shown in Section 4.10.3.

The indexes have nesting levels. The markup of an index is done by the code Example 4−2.

Example 4−2. Code for the generation of an index

LDP Author Guide

4.5. Encoding Indexes 29

<indexterm>
<primary>Main level</primary>
<secondary>Second level</secondary>
<tertiary>Third level</tertiary>

</indexterm>

It is possible to refer to chapters, sections, and other parts of the document using the attribute zone.

Example 4−3. Use of the attribute zone

<section id="encoding−index">
<title>Encoding Indexes</title>

<indexterm zone="encoding−index">
<primary>edition</primary>
<secondary>index</secondary>

</indexterm>

<para>The generation of indexes depend on the inserted markups on the text. </para>

The Example 4−3 has the code used to generate the entry of this edition on the index. In fact, since the
attribute zone is used, the index statement could be located anywhere in the document or even in a separate
file.

However, to facilitate maintenance the entries for the index were all placed after the text to which it refers.

Example 4−4. Usage of values startofrange and endofrange on the attributeclass

<para>Typing the text normally sometimes there's the need of
<indexterm class="startofrange" id="example−band−index">

<primary>examples</primary>
<secondary>index</secondary>

</indexterm>
 mark large amounts of text.</para>

<para>Keep inserting the paragraphs normally.</para>

<para>Until the end of the section intended
 to be indexed.

<indexterm startref="example−band−index" class="endofrange">.
</para>

4.6. Inserting Pictures

It is necessary to insert pictures for all media the document will be published for.

If you use the TeX format you'll need the images as a PostScript file. For online publishing you can use any
kind of common image file, such as JPG, GIF or PNG.

The easiest way to insert pictures is to use the fileref attribute. Usually pictures are generated in JPG and in

LDP Author Guide

4.6. Inserting Pictures 30

PostScript (PS or EPS).

Example 4−5. Inserting a picture

<figure>
<title>Picture's Title</title>
<graphic fileref="images/file"></graphic>

</figure>

Replacing <figure> by <informalfigure> eliminates the need to insert a title for the picture.

There's still the float attribute on which the value 0 indicates that the picture should be placed exactly where
the tag appears. The value 1 allows the picture to be moved to a more convenient location (this location can
be described on the style sheet used or even can be controlled by the application being used).

4.6.1. Alternative Methods

The first alternative to Example 4−5 is to eliminate the <figure> or <informalfigure> elements.

Another interesting alternative when you have decided to publish the text on media where pictures are not
accepted, is the use of a wrapper, <imageobject>.

Example 4−6. Using <imageobject>

<figure>
<title>Title</title>
<mediaobject>

<imageobject>
<imagedata fileref="images/file.eps" format="eps">

</imageobject>
<imageobject>

<imagedata fileref="images/file.jpg" format="jpg">
</imageobject>
<textobject>

<phrase>Here there's an image of this example</phrase>
</textobject>
<caption><para>Image Description. Optional. </para></caption>

</mediaobject>
</figure>

Files using the following formats are available BMP, CGM−BINARY, CGM−CHAR, CGM−CLEAR,
DITROFF, DVI, EPS, EQN, FAX, GIF, GIF87A, GIF89A, IGES, JPEG, JPG, LINESPECIFIC, PCX, PIC,
PS, SGML, TBL, TEX, TIFF, WMF, WPG.

This method presents an advantage: a better control of the application. The elements <imageobject> are
consecutively tested until one of them is accepted. If the output format does not support images the
<textobject> element will be used. However, the biggest advantage in usage of the format Example
4−6 is that in DocBook 5.0, the <graphic> element will cease to exist.

As a disadvantage, there is the need for more than one representation code of the same information. It is up to

LDP Author Guide

4.6.1. Alternative Methods 31

the author to decide which method to implement illustrations and pictures on the document, but for
compatibility with future versions I recommend the use of this method for pictures and graphics.

4.7. Tables

Some ideas are best shown when formatted as tables.

A primitive way to create tables was already presented in Table 4−1 with the use of <simplelist>.
However, DocBook has more sophisticated methods to deal with this information.

Example 4−7. Inserting tables

<table frame="all">
 <title>Sample Table</title>
 <tgroup cols="5">
 <colspec colname="column1">
 <colspec colname="column2">
 <colspec colname="column3">
 <colspec colnum="5" colname="column5">
 <spanspec namest="column1" nameend="column2" spanname="span−horiz" align="center">
 <spanspec namest="column2" nameend="column3" spanname="span−horiz−vert" align="center">
 <thead>
 <row>
 <entry spanname="span−horiz">
 <foreignphrase>Span</foreignphrase> horizontal
 </entry>
 <entry>Heading 2</entry>
 <entry>Heading 3</entry>
 <entry>Heading 4</entry>
 </row>
 </thead>
 <tfoot>
 <row>
 <entry>Footing 1</entry>
 <entry>Footing 2</entry>
 <entry>Footing 3</entry>
 <entry>Footing 4</entry>
 <entry>Footing 5</entry>
 </row>
 </tfoot>
 <tbody>
 <row>
 <entry>Data11</entry>
 <entry>Data12</entry>
 <entry>Data13</entry>
 <entry>Data14</entry>
 <entry>Data15</entry>
 </row>
 <row>
 <entry>Data21</entry>
 <entry>Data22</entry>
 <entry>Data23</entry>
 <entry>Data24</entry>
 <entry morerows="1" valign="middle">
 Vertical <foreignphrase>Span</foreignphrase>
 </entry>

LDP Author Guide

4.7. Tables 32

 </row>
 <row>
 <entry>Data31</entry>
 <entry spanname="span−horiz−vert" morerows="1" valign="bottom">
 Double <foreignphrase>Span</foreignphrase>
 </entry>
 <entry>Data34</entry>
 </row>
 <row>
 <entry>Data41</entry>
 <entry>Data44</entry>
 <entry>Data45</entry>
 </row>
 </tbody>
 </tgroup>
</table>

Table 4−2. Example Table

Horizontal Span Heading 2 Heading 3 Heading 4

Data11 Data12 Data13 Data14 Data15

Data21 Data22 Data23 Data24
Vertical Span

Data31
Double Span

Data34

Data41 Data44 Data45

Footing 1 Footing 2 Footing 3 Footing 4 Footing 5

4.8. Listings and program codes

This feature allows authors to show parts of code. It also lets allows the author to insert comments within the
code using callouts.

This was used to demonstrate how a catalogue file is configured (see Section 4.3). That code is shown below.
If the callout feature is not needed, it is possible to eliminate the areas between <areaspec> and
<calloutlist>.

<example id="sample−catalog">
 <title>Catalog Sample</title>
 <programlistingco>
 <areaspec>
 <area coords="1" id="ex.catalogue.comment">
 <area coords="5" id="ex.catalogue.definition">
 <area coords="11" id="ex.catalogue.eof">
 </areaspec>
 <programlisting>
−− Catalogues for the Conectiva S.A. Style −−

OVERRIDE YES

PUBLIC "−//Conectiva SA//DTD books V1.0//EN" "/home/ldp/estilos/livros.dtd"

DELEGATE "−//OASIS" "/home/ldp/SGML/dtds/catalog.dtd"

LDP Author Guide

4.8. Listings and program codes 33

DOCTYPE BOOK /home/ldp/SGML/dtds/docbook/db31/docbook.dtd

−− EOF −−
 </programlisting>
 <calloutlist>
 <callout arearefs="ex.catalogue.comment">
 <to> Comment. Comments begin with <quote>−−</quote>
 and follows to the end of the line. </to>
 </callout>
 <callout arearefs="ex.catalogue.definition">
 <to> The public type association
 <parameter class="option">"−//Conectiva SA//DTD books V1.0//EN"</parameter>
 with the file <filename>books.dtd</filename> on the directory
 <filename class="directory">/home/ldp/estilos</filename>. </para>
 </callout>
 <callout arearefs="ex.catalogue.eof">
 <para> Comment informing the end of the file. </para>
 </callout>
 </calloutlist>
 </programlistingco>
</example>

The listings can be directly inserted in the document's body without the need of the <example> or
<para> elements.

The calling coordinates' specifications are done with reference to the code line which will be commented
upon.

4.9. Crediting Translators and Converters

When someone else assists in the production of an LDP document, you should give them proper attribution,
and there are DocBook tags designed to do this. This section will show you the tags you should use, as well
as other ways of giving credit where credit is due. Crediting editors is easy − there is already an
<editor>tag in DocBook. But there are two special cases where you need to credit someone, but DocBook
doesn't provide a special tag. These are translators and converters.

A converter is someone who performs a source code conversion, e.g., from HTML to DocBook SGML.
Source code conversions help the LDP achieve long term goals for meta−data, and allow us to produce
documentation in many different output formats.

Translators take your original document and translate it into other human−readable languages, e.g., from
English to Japanese, or from German to English. Each translation allows many more people all over the
world to make use of your document, and helps Linux achieve the ultimate goal − Total World
Domination(tm)!

As you will see in the following sections, there are several ways that these folks, as well as other contributors
to your document, can be given some recognition for the help they've given you.

LDP Author Guide

4.9. Crediting Translators and Converters 34

4.9.1. The <othercredit> Tag

All translators and converters should be credited with an <othercredit> tag entry. To properly credit a
translator or converter, use the <othercredit> tag with the <role> attribute set to "converter" or
"translator", as indicated in the example below:

<othercredit role='converter'>
<firstname>David</firstname>
<surname>Merrill</surname>
<contrib>Conversion from HTML to DocBook v3.1 (SGML).</contrib>

</othercredit>

4.9.2. The "Acknowledgements" section

Your document should have an "Acknowledgements" section, in which you mention everyone who has
contributed to your document in any meaningful way. You should include translators and converters, as well
as people who have sent you lots of good feedback, perhaps the person who taught you the knowledge you
are now passing on, and anybody else who was instrumental in making the document what it is. Most authors
put this section at the end of their document.

4.9.3. The <revremark> tag

Within the <revision> tag hierarchy is a tag called <revremark>. Within this tag, you can make any
brief notes you wish about each particular revision of your document. We recommend that you acknowledge
converters in the comment for the initial version released in the new format, and we recommend that you
credit translators in each version which they have translated.

4.10. Tools & Hints

The process of producing output and generating indexes is repetitive and error prone. To make things easier,
some scripts are included here to facilitate this work. Customize and use them at will.

4.10.1. Compiling the sources

The compiles−sgml script is a set of grouped commands. As parameters, use the SGML file and the output
format you want.

The script included below supports the following formats: XML, HTML, TeX, RTF, PS, DVI and mirrored
PS, ideal for the creation of photolithographs.

The generation of the indices is made automatically by the script collateindex.pl [3], which should be
installed in your system.

Besides the commands below, which generate the outputs in different formats, there are other tools from
Cygnus for making the direct conversion. The tools can be obtained from Cygnus.

LDP Author Guide

4.9.1. The <othercredit> Tag 35

#FTN.AEN1763
http://sourceware.cygnus.com/docbook-tools/

The list below is available here.

Here is also available a version of collateindex.pl.

Example 4−8. Script compiles−sgml

#!/bin/bash
#
Compile DocBook documents into several output formats.
#
Godoy.
19991230 − Initial release.
20000117 − Placed the options using "case" and parameters passed
via command line. The pages on the Zope are already updated.
−−− Removed to public version (/home/ldp).
20000120 − Placed the call to use the books.dtd.
20000126 − Placed the commands for the index generation.

If the jade is already installed, disconsider the line bellow.
JADE=/usr/bin/jade

If the jade package is already installed, disconsider the line bellow.
JADE=/usr/bin/openjade

DOCUMENT=$1
shift 1
TYPE=$1

. ~/.bash_profile

. ~/.bashrc

case $TYPE in
 html)

rm −f *.htm
rm −f *.html
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o index.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o index.sgml HTML.index
$JADE −t sgml −i html −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl −d /home/ldp/SGML/conectiva/livros.dsl#html $DOCUMENT.sgml

 ;;
 rtf)

rm −f $DOCUMENT.rtf
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o index.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o indice.sgml HTML.index
$JADE −t rtf −V rtf−backend −d /home/ldp/SGML/style/dsssl/docbook/print/docbook.dsl −d /home/ldp/SGML/conectiva/books.dsl#print $DOCUMENT.sgml

 ;;
 xml)

rm −f $DOCUMENT.xml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o index.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o indice.sgml HTML.index
$JADE −t sgml −i xml −d /home/ldp/SGML/style/xsl/docbook/html/docbook.xsl $DOCUMENT.sgml

 ;;
 tex)

rm −f $DOCUMENT.tex
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o indice.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml

LDP Author Guide

4.9.1. The <othercredit> Tag 36

compiles-sgml
collateindex.pl

perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o indice.sgml HTML.index
$JADE −t tex −V tex−backend −d /home/ldp/SGML/style/dsssl/docbook/print/docbook.dsl −d /home/ldp/SGML/conectiva/livros.dsl#print $DOCUMENT.sgml

 ;;
 dvi)

rm −f $DOCUMENT.tex
rm −f $DOCUMENT.dvi
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o indice.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o indice.sgml HTML.index
$JADE −t tex −V tex−backend −d /home/ldp/SGML/style/dsssl/docbook/print/docbook.dsl −d /home/ldp/SGML/conectiva/livros.dsl#print $DOCUMENT.sgml
jadetex $DOCUMENT.tex

 ;;
 mirror)

rm −f $DOCUMENT.tex
rm −f $DOCUMENT.dvi
rm −f $DOCUMENT.mirror.ps
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o indice.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o indice.sgml HTML.index
$JADE −t tex −V tex−backend −d /home/ldp/SGML/style/dsssl/docbook/print/docbook.dsl −d /home/ldp/SGML/conectiva/livros.dsl#print $DOCUMENT.sgml
jadetex $DOCUMENT.tex
dvips −h /home/ldp/estilos/skel/mirr.hd −O 1.5cm,3cm −f $DOCUMENT.dvi −o $DOCUMENT.mirror.ps

 ;;
 ps)

rm −f $DOCUMENT.tex
rm −f $DOCUMENT.dvi
rm −f $DOCUMENT.ps
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −N −o indice.sgml
jade −t sgml −V html−index −d /home/ldp/SGML/style/dsssl/docbook/html/docbook.dsl $DOCUMENT.sgml
perl /home/ldp/SGML/style/dsssl/docbook/bin/collateindex.pl −o indice.sgml HTML.index
$JADE −t tex −V tex−backend −d /home/ldp/SGML/style/dsssl/docbook/print/docbook.dsl −d /home/ldp/SGML/conectiva/livros.dsl#print $DOCUMENT.sgml
jadetex $DOCUMENT.tex
dvips −The 1.5cm,3cm −f $DOCUMENT.dvi −o $DOCUMENT.ps

 ;;
 *)

echo "How to use: $0 file {html|tex|rtf|xml|ps|dvi|mirror}"
exit 1
esac

exit 0

A similar script can be modified by creating a Makefile and optimizing some functions.

4.10.2. Inserting a summary on the initial articles page

A feature that might be valuable in some cases is the insertion of the summary on the initial page of an
article. DocBook articles do not include it as a standard feature.

To enable this, it is necessary to modify the stylesheet file.

The example below describes the process, and its use is shown in Example 4−8.

Example 4−9. Stylesheet to insert summaries in articles

LDP Author Guide

4.10.2. Inserting a summary on the initial articles page 37

<!DOCTYPE style−sheet PUBLIC "−//James Clark//DTD DSSSL Style Sheet//EN" [
<!entity html−docbook PUBLIC "−//Norman Walsh//DOCUMENT DocBook HTML Stylesheet//EN" CDATA DSSSL>
<!entity print−docbook PUBLIC "−//Norman Walsh//DOCUMENT DocBook Print Stylesheet//EN" CDATA DSSSL>
]>

<style−sheet>
<style−specification use="html">
<style−specification−body>

; Includes a summary at the beginning of an item.
(define %generate−article−toc% #t)

</style−specification−body>
</style−specification>
<style−specification use="print">
<style−specification−body>

; Includes a summary at the beginning of an item.
(define %generate−article−toc% #t)

</style−specification−body>
</style−specification>
<external−specification id="html" document="html−docbook">
<external−specification id="print" document="print−docbook">
</style−sheet>

4.10.3. Inserting indexes automatically

Although DocBook has markups for the composition of them, indexes are not generated automatically. The
collateindex.pl command allows indexes to be generated automatically.

The way to use this script is described bellow and a practical example can be seen previously in this
document (see Example 4−8).

Process the document with jade using the style to HTML with the option −V html−index.

$ jade −t sgml −d html/docbook.dsl −V html−index document.sgml

1.

Generate the index.sgml file with collateindex.pl.

$ perl collateindex.pl −o index.sgml HTML.index

2.

For the above example to work, it's necessary to define an external entity by calling the file index.sgml.

Example 4−10. Configuring an external entity to include the index

<!doctype article PUBLIC "−//OASIS//DTD DocBook V3.1//EN" [

<!−− Insertion of the index −−>
<!entity index SYSTEM "index.sgml">
]>

LDP Author Guide

4.10.3. Inserting indexes automatically 38

See also Section 4.5 for information on how to insert necessary information on the text.

Note: Remember that if you're trying to get Tables of Contents or Indexes on PS or PDF
output you'll need to run jadetex or pdfjadetex at least three times. This is required by
TeX but not by DocBook or related applications.

4.10.4. Making notes on the text while it is being written

An important feature while writing a text is the ability to check whether or not it will be presented in the final
draft. It's common to have several parts of the text marked as draft, especially when updating an already
existing document.

DocBook allows the insertions of specific parts of text in several places of the document based on the
context. Sometimes for an upgrading we need to see how the document looks like or just have sketches of a
new session or chapter, but we don't want this sketch to appear in the final draft.

With the use of parameter entities, you can include or eliminate these drafts by altering only one line at the
beginning of a document.

Example 4−11. Use of parameter entities

<!entity % review "INCLUDE">
...
<![%review;[
<para>This paragraph will be included on the draft when the entity
"review" is defined with the value "INCLUDE". </para>
]]>

The entity review might have several texts defined, as in Example 4−11. When the changes to the text are
considered final, you need only to remove parts of the text between the 3rd. and 6th. lines.

To keep the draft definitions and hide the text in the final draft, just alter the specification of the entity from
INCLUDE to IGNORE.

4.10.5. Re−using parts of documents

An important feature of external entities is re−using text and documents.

This makes it possible to create files with text that are used several times (e.g. licenses and company policies)
or simply include files in the appropriate place.

An example and application of this was used previously in Example 4−10. Another example is the
DocBook code of this HOWTO.

LDP Author Guide

4.10.4. Making notes on the text while it is being written 39

4.11. Document samples

As stated before each type of document has a particular heading and valid commands structure. The
following sub−sections will provide heading and valid command structures for articles and books.

These examples do not cover all possibilities and they are available here to serve as generic guides for is
possible with DocBook.

4.11.1. Article example

<article class="whitepaper" id="using −docbook" lang="pt−br"><?dbhtml filename="using−docbook.html">

 <artheader>
 <title>Como−Fazer DocBook</title>
 <author>
 <firstname>Jorge</firstname>
 <othername>Luiz</othername>
 <surname>Godoy</surname>
 <othername>Filho</othername>
 <affiliation>
 <orgname><ulink url="http://www.conectiva.com">Conectiva S.A.</ulink></orgname>
 <orgdiv>Publishing Department</orgdiv>
 <address><email>godoy@conectiva.com</email></address>
 </affiliation>
 </author>
 <revhistory>
 <revision>
 <revnumber>1.0</revnumber>
 <date>27 de janeiro de 2000</date>
 <authorinitials>godoy</authorinitials>
 <revremark>Versão inicial.</revremark>
 </revision>
 </revhistory>

 <legalnotice>
 <para>This document can be freely translated and distributed. It's released
 under the LDP License.</para>
 </legalnotice>

 <keywordset>
 <keyword>SGML</keyword>
 <keyword>DocBook</keyword>
 <keyword>DTD</keyword>
 <keyword>XML</keyword>
 <keyword>catalogs</keyword>
 <keyword>documents</keyword>
 <keyword>Publishingdlt;/keyword>
 <keyword>Conectiva</keyword>
 <keyword>configuration</keyword>
 <keyword>use</keyword>
 <keyword>tools</keyword>
 <keyword>HOWTO</keyword>
 </keywordset>

 </artheader>

LDP Author Guide

4.11. Document samples 40

4.11.2. Book Example

LDP Author Guide

4.11.2. Book Example 41

Chapter 5. LDP Style Guide

5.1. Deciding on a Subject

Before you begin writing a HOWTO, it is essential that you determine what subject area you will cover. It is
best if the subject area is:

Not too broad, and not too narrow. Try to cover too much information, and you may sacrifice
depth. It is better to cover a small subject area fully than to cover a large subject area poorly. Linux
tools are known for doing exactly one thing and doing that one thing well. Similarly, your HOWTO
should cover one subject and cover it well.

1.

If your subject matter is very small, it might be better included as part of another HOWTO. This
makes it easier for readers to find the HOWTO they need. Search the LDP repository for HOWTOs
on related topics, and see if you could place your information in an existing HOWTO.

How much is too much? How little is too little? That depends on the subject you chose, your mastery
of that subject, and many other factors. Just keep this admonition in mind, and use good judgment.

Clearly defined. Know before you begin exactly where the boundaries of your subject area lie. You
should not cover the same ground as another HOWTO, and you should try not to leave gaps between
your HOWTO and related HOWTOs, either.

2.

Undocumented. Before writing on a particular subject, check other HOWTOs at the LDP, and see if
the topic is already documented. If it is, refer to the other HOWTO instead of rewriting
documentation that already exists. Don't reinvent the wheel.

3.

If the HOWTO already in place is insufficient, or needs updating, contact the author and offer to
help. LDP authors are usually nice folks. After all, they put in their own valuable time to help people
they don't even know. And, they appreciate your help. But, please, don't duplicate work. It causes
confusion for everyone.

Pre−approved by the LDP. Before you proceed with your HOWTO, post to the ldp−discuss list and
get some feedback from other LDP volunteers. Checking with the list before you begin can save you
headaches later. The author speaks from experience.

4.

It is a really good idea to join the ldp−discuss list, and follow it regularly, even if you never post. It's
a good way to stay current on the activities, needs, and policies of the LDP. Although the LDP
volunteers are here to assist you, it is ultimately your responsibility to learn these policies, and to
follow them.

5.2. Developing an Outline

Before you actually begin writing, prepare an outline. An outline will help you get a clear picture of the
subject matter, and allow you to concentrate on one small part of the HOWTO at a time.

Unless your HOWTO is exceptionally small, your outline will probably be multilevel. When developing a
multilevel outline, the top level should contain general subject areas, and sub−headings should be more
detailed and specific. Look at each level of your outline independently, and make sure it covers all key areas

Chapter 5. LDP Style Guide 42

of the subject matter. Sub−headings should cover all key areas of the heading under which they fall.

Each item in your outline should logically follow the item before it, and lead into the item it precedes. For
example, a HOWTO about a particular program shouldn't have a section on configuration before one on
installation.

When you are comfortable with your outline, look over it once more, with a critical eye. Have you covered
every relevant topic in sufficient detail? Have you wandered beyond the scope of the HOWTO? You might
want to show it to someone else, and ask for feedback. It's much easier to reorganize your HOWTO at the
outline stage than it will be later. Consider submitting the outline to the ldp−discuss list for more feedback.

Note: You might have noticed a theme developing here. Just like Free software, Free
documentation is best when you "release early, release often." The ldp−discuss list includes
many experienced LDP authors, and you would be wise to seek their advice when making
decisions about your HOWTO.

Remember Linus' Law:

"Given enough eyeballs, all [typos] are shallow."
−−Eric S. Raymond

(With apologies to Mr. Raymond.)

FIXME: Need a reference to the "standard" HOWTO layout, for topic areas such as Credits, License,
Copyright, etc., etc.

5.3. Writing the Text

At this point, your HOWTO has been organized, and bits of raw information have been collected,
documented, and inserted into the outline. Good news: You're past the midpoint; it's all downhill from here.

Your next challenge is to massage all of the raw data you've collected into a readable, entertaining, and
understandable whole.

It has taken quite a bit of work to get to the point where you can actually start writing, hasn't it? Well, the
hard work begins to pay off for you now. At this stage, you can begin to really use your imagination and
creativity to communicate this heap of dry, boring information in your own unique way.

It is beyond the scope of this document to provide a comprehensive guide to effective writing, so I won't try
to go beyond the basics. In the "References" section, you will find a list of resources that cover the subject
better than this guide could hope to. Consult them, and follow their advice.

For starters, here is some good advice from Politics and the English Language:

A scrupulous writer, in every sentence that he writes, will ask himself at least four

LDP Author Guide

5.3. Writing the Text 43

http://www.resort.com/~prime8/Orwell/patee.html

questions, thus:

What am I trying to say? 1.
What words will express it? 2.
What image or idiom will make it clearer? 3.
Is this image fresh enough to have an effect? 4.

And he will probably ask himself two more:

Could I put it more shortly? 1.
Have I said anything that is avoidably ugly? 2.

...One can often be in doubt about the effect of a word or phrase, and one needs rules
that one can rely on when instinct fails. I think the following rules will cover most
cases:

Never use a metaphor, simile, or other figure of speech which you are used to
seeing in print.

1.

Never use a long word where a short one will do. 2.
If it is possible to cut a word out, always cut it out. 3.
Never use the passive where you can use the active. 4.
Never use a foreign phrase, a scientific word, or a jargon word if you can think
of an everyday English equivalent.

5.

Break any of these rules sooner than say anything outright barbarous. 6.
−−George Orwell

And, from a purely stylistic point of view, I believe that the first−person perspective of many HOWTOs adds
to their charm, an attribute most documentation in other forms sorely lacks. Don't be afraid to speak for
yourself, use the word "I", or describe personal experiences and opinions.

If it hasn't become painfully obvious yet, the underlying principle of all these suggestions is simplicity. Your
readers are already struggling with new concepts, so don't make them struggle to understand your language.
Remember the KISS principle: Keep It Simple, Stupid!

5.4. Editing and Proofing the Text

Once you've written the text of your HOWTO, it is time to polish and refine it. Good editing can make the
difference between a good HOWTO and a great one.

One of the goals of editing is to remove extraneous material that has crept its way into your document. You
should go through your HOWTO carefully, and ruthlessly delete anything that doesn't contribute to the
reader's understanding of the subject matter. It is natural for writers to go off on tangents while in the process
of writing. This is the time to correct that.

When editing and proofing your work, you must check for obvious mistakes, such as spelling errors and
typos. However, you should check for deeper, but less obvious errors as well, such as "holes" in the
information. Make sure that the contents of every section match the title of that section precisely.

When you are completely satisfied with the quality and accuracy of your work, forward it to someone else for

LDP Author Guide

5.4. Editing and Proofing the Text 44

third−party proofing. You will be too close to the work to see fundamental flaws.

In a sense, editing is like code review in software development. Having a programmer review their own code
doesn't make much sense, does it? Why should having a writer edit their own document make any more
sense? So, recruit a friend, or write the ldp−discuss list to find a volunteer to proofread before submitting
your HOWTO.

Note: If you are writing in a language in which you are not fluent, I strongly recommend that
you seek an editor who is. Technical documentation, more than any other type of writing,
must use extremely precise grammar and vocabulary. Misuse of the language, no matter how
understandable and unintended, makes your HOWTO less valuable.

5.5. Maintaining Your HOWTO

Just because your HOWTO has now been published doesn't mean your job is done. HOWTOs need regular
maintenance, to make sure they are up to date, and to improve them in response to readers' ideas and
suggestions. A HOWTO is a living, growing body of knowledge, not just a publish−and−forget−it static
document.

You put your email address in the HOWTO, and politely requested feedback from your readers, right? Once
you are officially published, you will begin to receive notes with suggestions. Some will be very valuable;
others will request personal assistance. You should feel free to decline personal assistance if you cannot spare
the time. Writing a HOWTO for the LDP doesn't commit you to a lifetime of free support for anyone on the
net. It is polite to refer questioners to another resource, if you can. And, if you see a pattern in the questions
you receive, it might indicate a topic you should add to your HOWTO.

5.6. References

There are many guides to writing style available online. Here is a brief list of some of the best:

Politics and the English Language. •
The Elements of Style•
FIXME: Please send the URL of your favorite resource on technical writing. •

LDP Author Guide

5.5. Maintaining Your HOWTO 45

http://www.resort.com/~prime8/Orwell/patee.html
http://bartleby.com/141

Chapter 6. Additional Style−related Items
This section contains additional style−oriented topics to consider when preparing your document.

6.1. Date formats

The <pubdate> tag in your header should be in the following format:

v1.0, 2000/04/10

The date is in the format YYYY/MM/DD, which is an ISO standard for representing dates. For you Yanks
out there (me too), think of it as going from the largest unit of time to the smallest.

6.2. Graphics formats

When submitting graphics to the LDP, please submit one set of graphics in .eps, and another in either
.gif or .jpg. Be aware of the patent issues with .gif, but it makes slightly better pictures than .jpg.

6.3. DocBook Versions

The LDP supports and accepts documentation in the following formats:

SGML DocBook versions 4.x and 3.1 •
SGML LinuxDoc •
XML DocBook version 4.1.2 •

When writing your DocBook header, it should look like this:

<!DOCTYPE article PUBLIC "−//OASIS//DTD DocBook V4.1//EN">

6.4. Obsolete Tags

Some tags listed in DocBook: The Definitive Guide may be listed as being discarded in future revisions of
DocBook. To maintain future compatability, the LDP recommends against using tags that will be discarded
in the future. Some ways to use newer tags are listed in the tip and tricks section.

6.5. Tag Minimization

Tag minimization is using </> instead of the full end of a tag (such as </para>. Since this makes the
document more confusing for future authors and LDP members, and is not allowed in XML DocBook, please
refrain from this practice.

Chapter 6. Additional Style−related Items 46

6.6. Conventions

Conventions for different kinds of text is as follows:

If you're going to show the use of a command, format the command so it looks like a user's command line.
The prompt must contain the shell type (bash, tcsh, zsh, etc) followed by a $ for commands to be run as a
normal (non−root) user or a # for a root user.

A command would then look like this:

bash$ command "run as a normal user"
bash# command "run as a root user"
tcsh# setenv DISPLAY :0.0

LDP Author Guide

6.6. Conventions 47

Chapter 7. Tips and Tricks with DocBook
This section covers a few quirks of DocBook that you may run into when writing your documents.

7.1. Including Images

If you plan on including images in your HOWTOs, you can now do this, as LinuxDoc didn't support images.
Here's a sample way of including an image in your HOWTOS:

<figure>
<title>LyX screen shot</title>
<mediaobject>

<imageobject>
<imagedata fileref="lyx_screenshot.eps" format="eps">

</imageobject>
<imageobject>

<imagedata fileref="lyx_screenshot.jpg" format="jpg">
</imageobject>
<textobject>

<phrase>Screen shot of the LyX document processing program</phrase>
</textobject>

</mediaobject>
</figure>

This is a better way than using <graphic> for two reasons. First, <graphic> will be removed in
DocBook 5.0 in favor of the <mediaobject> tag. So you may as well get started with the right way now.
Second, <mediaobject> allows for different kinds of media based on what the output is. In this example,
the first <imageobject> is an encapsulated PostScript(eps) file for use with formats derived from TeX
such as DVI, PS, and PDF. The second <imageobject> is a JPEG image for visual display, mostly for
HTML output. The <textobject> is presented if the output doesn't support graphics (TXT). Think of it as
an HTML <alt> tag.

7.2. Naming separate HTML files

By default, when separate HTML files are made, the SGML processor will assign arbitrary names to the
resulting files. This can be confusing to readers who may bookmark a page only to have it change. Whatever
your reasoning, here's how to make separate files named the way you want:

In your first <article> tag (which should be the only one) include an id parameter and call it index. This
will make your tag look like this:

<article id="index">

On the first <chapter> tag, do not modify it, as it's usually an introduction and you want that on the first
page. For each other <section> tag, include the id parameter and name it. A name should include only
alphanumeric characters, and it should be short enough to understand what it is.

<chapter id="tips">

Chapter 7. Tips and Tricks with DocBook 48

7.3. Using ldp.dsl

The LDP uses its own DSSSL file, which adds things like a white background and automatic generation of
the table of contents you see at the beginning of HOWTOs. You can find the latest copy of the file at
http://www.linuxdoc.org/authors/tools/ldp.dsl.

Once you have the file, you may need to do some editing of the first few lines based on the location of your
DocBook DSSSL files. My example uses the Cygnus tool set.

Place the ldp.dsl file in /usr/lib/sgml/stylesheets and bring it up under your favorite text
editor.You should see something like this:

<!DOCTYPE style−sheet PUBLIC "−//James Clark//DTD DSSSL Style Sheet//EN" [
<!ENTITY % html "IGNORE">
<![%html;[
<!ENTITY % print "IGNORE">
<!ENTITY docbook.dsl SYSTEM "docbook.dsl " CDATA dsssl>
]]>
<!ENTITY % print "INCLUDE">
<![%print;[
<!ENTITY docbook.dsl SYSTEM "docbook.dsl " CDATA dsssl>
]]>
]>

Change the first "docbook.dsl" to read
/usr/lib/sgml/stylesheets/nwalsh−modular/html/docbook.dsl

Change the second "docbook.dsl" to read
/usr/lib/sgml/stylesheets/nwalsh−modular/print/docbook.dsl

If you're using another DSSSL, point those two files to the location of the HTML and print DSSSL files.
They're usually in directories called html and print.

With that complete, you can now generate HTML files:

bash$ mkdir HOWTO−HOWTO ; cd HOWTO−HOWTO
bash$ jade −t sgml −i html −d /usr/lib/sgml/stylesheets/ldp.dsl\#html ../HOWTO−HOWTO.sgml

The first command creates a new directory to put your files into. The second command (the jade one)
generates individual HTML files for each section of your document. If you are going to something like RTF,
you can do this:

bash$ jade −t rtf −d /usr/lib/sgml/stylesheets/ldp.dsl ../HOWTO−HOWTO.sgml

LDP Author Guide

7.3. Using ldp.dsl 49

http://www.linuxdoc.org/authors/tools/ldp.dsl

Chapter 8. Distributing your documentation

8.1. Before you distribute

Before you distribute your code to millions of potential readers there are a few things you should do.

First, be sure to spell−check your document. Most utilities that you would use to write SGML have plug−ins
to perform a spell check. If not, there's always the aspell program.

Second, get someone to review your documentation for factual correctness. You can also ask for general
comments. The documentation that is published by the LDP needs to be as factually correct as possible, as
there are millions of Linux users that may be reading it. If you're part of a larger mailing list talking about the
subject, ask others from the list to help you out.

Third, create a web site where you can distribute your documentation. This isn't required, but is helpful for
people to find the original location of your document.

8.1.1. Validating SGML code

Using jade, or really the nsgmls command, you can validate your .sgml code against the DTD to make sure
there aren't any errors.

bash$ nsgmls −s HOWTO−HOWTO.sgml

If there are no issues, you'll just get your command prompt back.

8.1.2. Validating XML code

Validating XML is a touch harder than validating SGML code, but it can be done. You will need to have
XML DocBook installed, and then set the SGML_CATALOG_FILES to the location of xml.soc (included
with jade) and to the location of the DocBook XML catalog file.

bash$ export SGML_CATALOG_FILES=/usr/lib/sgml/declaration/xml.soc:/usr/lib/xml/catalog
bash$ nsgmls −s HOWTO−HOWTO.xml

8.2. Copyright and Licensing issues

In order for an LDP document to be accepted by the LDP, it must be licensed to conform to the "LICENSE
REQUIREMENTS" section of the LDP Manifesto located at http://www.linuxdoc.org/manifesto.html. As an
author, you may retain the copyright and add other restrictions (for example, you must approve any
translations or derivative works).

We recommend using the GNU Free Documentation License (GFDL) or the Open Publication License
(OPL) without options A and B. If you choose, you can get DocBook markups of both the GNU GPL and the
GNU FDL from the GNOME Documentation Project. You can then merely include the license in its entirety

Chapter 8. Distributing your documentation 50

http://www.linuxdoc.org/manifesto.html
http://www.gnu.org/copyleft/fdl.html
http://opencontent.org/openpub/
http://opencontent.org/openpub/
http://developer.gnome.org/projects/gdp/licenses.html

in your document. Due to its length, you may just want to provide a link to the source.

If you choose to use a boilerplate copyright, simply copy it into your source code under a section called
"Copyright and Licenses" or similar. Also include a copyright statement of your own (since you still own it).
If you are a new maintainer of an already−existing HOWTO, you must include the previous copyright
statements of the previous author(s) and the dates they maintained that document.

You'll note that the licensing for the LDP Author Guide requires notification to the author of any derivative
works or translations. I also explicitly place any source code (aside from the SGML the Guide was written in)
under the GPL. If your HOWTO includes bits of source code that you want others to use, you may do the
same.

8.3. Submission to LDP

Once your LDP document has been carefully reviewed, you can release your document to the LDP. Send an
e−mail with the SGML source code as an attachment (you may gzip it if you like) to
<submit@linuxdoc.org>.

Be sure to include the name of your HOWTO in the subject line, and use the body to outline changes you've
made and attach your HOWTO. This allows the maintainers to do their jobs faster, so you will not have to
wait for your HOWTO to be updated on the LDP web site. If you don't hear anything in 5 calendar days,
please follow up with an e−mail to make sure things are still in process.

If your HOWTO contains extras, such as graphics or a special catalog, create a.tar.gz file with all the files in
it including the .sgml source code and mail it as an attachment to the ldp−submit list.

If you are using the LDP CVS tree while developing your document, the LDP will still need to be notified
when your document is ready to be published. E−mail should be sent to <submit@linuxdoc.org>.
Indicate the title of your document and the relative path to the file(s) in the LDP CVS tree within your
message.

8.4. Maintaining Your HOWTO

Just because your HOWTO has now been published doesn't mean your job is done. HOWTOs need regular
maintenance, to make sure they are up to date, and to improve them in response to readers' ideas and
suggestions. A HOWTO is a living, growing body of knowledge, not just a publish−and−forget−it static
document.

You put your email address in the HOWTO, and politely requested feedback from your readers, right? Once
you are officially published, you will begin to receive notes with suggestions. Some will be very valuable;
others will request personal assistance. You should feel free to decline personal assistance if you cannot spare
the time. Writing a HOWTO for the LDP doesn't commit you to a lifetime of free support for anyone on the
net. It is polite to refer questioners to another resource, if you can. And, if you see a pattern in the questions
you receive, it might indicate a topic you should add to your HOWTO.

LDP Author Guide

8.3. Submission to LDP 51

mailto:submit@linuxdoc.org
mailto:submit@linuxdoc.org

Chapter 9. FAQs about the LDP
Q: I want to help the LDP. How can I do this?
Q: I want to publish a collection of LDP documents in a book. How is the LDP content licensed?
Q: I found an error in an LDP document. Can I fix it?
Q: But I don't know SGML/Can't get the tools working/Don't like SGML

Q: I want to help the LDP. How can I do this?

A: The easiest way is to find something and document it. Also check the unmaintained HOWTOs and see if
there is a subject there that you know about and can continue documenting.

Q: I want to publish a collection of LDP documents in a book. How is the LDP content licensed?

A: Please see http://www.linuxdoc.org/manifesto.html#pub for more information about publishing LDP
documents.

Q: I found an error in an LDP document. Can I fix it?

A: Contact the author of the document, or the LDP coordinator at <discuss@linuxdoc.org> and
mention the problem and how you think it needs to be fixed.

Q: But I don't know SGML/Can't get the tools working/Don't like SGML

A: That's okay. You have the option of writing your first draft of the HOWTO in the format of your choice,
then submit that to the LDP. An LDP volunteer will review the document, then convert it into DocBook for
you. Once that's done,it will be easier for you to maintain the HOWTO. If you have questions, you can
always drop a line to the LDP volunteer or the LDP Docbook list at <docbook@linuxdoc.org>.

Glossary

attribute

An attributte makes available extra information regarding the element on which it appears. The
attributes always appear as a name−value pair on the initialization pointers. Example of an attribute is
id="identification", which gives the attribute id the value identification.

Document Type Definition (DTD)

A group of statements that define element names and their attributes specifying the rules for
combinations and sequences. It's the DTD that defines which elements can or cannot be inserted in
the given context.

DSSSL

DSSSL stands for Document Style Semantics and Specification Language. It's an ISO standard
(ISO/IEC 10179:1996). The DSSSL standard is internationally used as a language for documents
stylesheets pages for SGML.

Chapter 9. FAQs about the LDP 52

http://www.linuxdoc.org/manifesto.html#pub
mailto:discuss@linuxdoc.org
mailto:docbook@linuxdoc.org

element

The elements define the hierarchical structure of a document. The majority of elements have opening
and closing pointers. Within these pointers, pieces of text or even the whole document being written
can be found. There are empty elements which contains only opening pointers without any content.

entity

An entity is a name designated for some part of data so that it can be referenced by a name. The data
could be anything from from simple characters to chapters to sets of statements of a DTD. Entity
parameters can be generic, external, internal or SGML data. An entity is similar to a variable in a
programming language, or a macro.

external entity

An external entity points to an external document. External entities are used to include texts on
certain locations of a SGML document. It could be used to include sample screens, legal notes, and
chapters for example.

generic entities

An entity referenced by a name, which starts with "&" and ends with semicolon is a generic entity.
Most of the time this type of entity is used in the document and not on the DTD. There are two types
of entities: external and internal. They can refer to special characters or to text objects such as
repeated sentences, names or chapters.

internal entity

An internal entity refers to part of the text and is often used as a shortcut for frequently repeated text.

parameter entity

An entity often used in the DTD. The entity's name starts with a percent sign (%) and ends with a
semicolon.

float

Objects such as side bars, pictures, tables, and charts are called floats when they don't have a fixed
placement on the text. For printed text, a chart can appear either at the top or at the bottom of the
page. It can also be placed on the next page if it is too large.

processing instruction

A processing instruction is a command passed to the document formatting tool. It starts with "<?".
This document uses processing instructions for naming files when it is rendered into HTML:
<?dbhtml filename="file.html">

SGML

Standard Generalized Markup Language. It is an international standard (ISO8879) that specifies
rules for the creation of electronic documents in markup systems, regardless the work platform used.

LDP Author Guide

Chapter 9. FAQs about the LDP 53

tag

An SGML element bounded by the marks "<" and ">". Tags are used to mark the semantic or logical
structure of a document. A sample is the tag <title> to mark the beginning of a title.

XML

eXtensible Markup Language. A subproduct of SGML created specifically for Internet use.

XSL

XML Style Language. XSL is to a XML document what a DSSSL style is for a SGML document.
The XSL is written in XML.

LDP Author Guide

Chapter 9. FAQs about the LDP 54

	Table of Contents
	Chapter 1. About this Guide
	1.1. Purpose / Scope of this Guide
	1.2. About the LDP
	1.3. Feedback
	1.4. Copyrights and Trademarks
	1.5. Acknowledgments and Thanks
	1.6. Documents

	Chapter 2. Introduction to the LDP and DocBook
	2.1. The LDP
	2.2. DocBook
	2.3. Why DocBook instead of HTML or other formats?
	2.4. Writing in DocBook XML
	2.4.1. Differences between XML and SGML
	2.4.2. Differences between DocBook 3.x and DocBook 4.x
	2.5. For New Authors
	2.5.1. Resources for New Authors
	2.6. Mailing Lists

	Chapter 3. The tools
	3.1. DSSSL
	3.1.1. Norman Walsh DSSSL
	3.1.2. LDP DSSSL
	3.2. DocBook DTD (version 4.1 or 3.1)
	3.3. Jade
	3.3.1. Jade
	3.3.2. OpenJade
	3.4. Jade wrappers
	3.4.1. sgmltools-lite
	3.4.2. Cygnus DocBook Tools
	3.5. Editing tools
	3.5.1. Emacs (PSGML)
	3.5.2. VIM
	3.5.3. WordPerfect 9 (Corel Office 2000)
	3.5.4. epcEdit
	3.5.5. nedit
	3.6. CVS
	3.6.1. Getting a CVS account
	3.6.2. Other CVS repository notes
	3.6.3. Common CVS Commands
	3.7. Other/Reference
	3.7.1. DocBook: The Definitive Guide
	3.7.2. SGML templates
	3.7.3. Aspell
	3.7.4. ispell

	Chapter 4. Using DocBook Tags
	4.1. Introduction
	4.2. Configuration needed
	4.3. Creating and modifying catalogues
	4.3.1. Explaining the terminology system
	4.3.2. Useful commands for catalogues
	4.4. Writing with DocBook elements
	4.4.1. Useful commands
	4.5. Encoding Indexes
	4.6. Inserting Pictures
	4.6.1. Alternative Methods
	4.7. Tables
	4.8. Listings and program codes
	4.9. Crediting Translators and Converters
	4.9.1. The <othercredit> Tag
	4.9.2. The "Acknowledgements" section
	4.9.3. The <revremark> tag
	4.10. Tools & Hints
	4.10.1. Compiling the sources
	4.10.2. Inserting a summary on the initial articles page
	4.10.3. Inserting indexes automatically
	4.10.4. Making notes on the text while it is being written
	4.10.5. Re-using parts of documents
	4.11. Document samples
	4.11.1. Article example
	4.11.2. Book Example

	Chapter 5. LDP Style Guide
	5.1. Deciding on a Subject
	5.2. Developing an Outline
	5.3. Writing the Text
	5.4. Editing and Proofing the Text
	5.5. Maintaining Your HOWTO
	5.6. References

	Chapter 6. Additional Style-related Items
	6.1. Date formats
	6.2. Graphics formats
	6.3. DocBook Versions
	6.4. Obsolete Tags
	6.5. Tag Minimization
	6.6. Conventions

	Chapter 7. Tips and Tricks with DocBook
	7.1. Including Images
	7.2. Naming separate HTML files
	7.3. Using ldp.dsl

	Chapter 8. Distributing your documentation
	8.1. Before you distribute
	8.1.1. Validating SGML code
	8.1.2. Validating XML code
	8.2. Copyright and Licensing issues
	8.3. Submission to LDP
	8.4. Maintaining Your HOWTO

	Chapter 9. FAQs about the LDP
	Glossary

